mirror of
https://github.com/huggingface/candle.git
synced 2025-06-18 03:28:50 +00:00
PyTorch like display implementation.
This commit is contained in:
@ -1,7 +1,7 @@
|
|||||||
/// Pretty printing of tensors
|
/// Pretty printing of tensors
|
||||||
/// This implementation should be in line with the PyTorch version.
|
/// This implementation should be in line with the PyTorch version.
|
||||||
/// https://github.com/pytorch/pytorch/blob/7b419e8513a024e172eae767e24ec1b849976b13/torch/_tensor_str.py
|
/// https://github.com/pytorch/pytorch/blob/7b419e8513a024e172eae767e24ec1b849976b13/torch/_tensor_str.py
|
||||||
use crate::{DType, Tensor, WithDType};
|
use crate::{DType, Result, Tensor, WithDType};
|
||||||
use half::{bf16, f16};
|
use half::{bf16, f16};
|
||||||
|
|
||||||
impl Tensor {
|
impl Tensor {
|
||||||
@ -52,26 +52,7 @@ impl std::fmt::Debug for Tensor {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
|
||||||
#[allow(dead_code)]
|
#[allow(dead_code)]
|
||||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
||||||
enum BasicKind {
|
|
||||||
Float,
|
|
||||||
Int,
|
|
||||||
Bool,
|
|
||||||
Complex,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl BasicKind {
|
|
||||||
fn for_tensor(t: &Tensor) -> BasicKind {
|
|
||||||
match t.dtype() {
|
|
||||||
DType::U32 => BasicKind::Int,
|
|
||||||
DType::BF16 | DType::F16 | DType::F32 | DType::F64 => BasicKind::Float,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
/// Options for Tensor pretty printing
|
/// Options for Tensor pretty printing
|
||||||
pub struct PrinterOptions {
|
pub struct PrinterOptions {
|
||||||
precision: usize,
|
precision: usize,
|
||||||
@ -81,9 +62,20 @@ pub struct PrinterOptions {
|
|||||||
sci_mode: Option<bool>,
|
sci_mode: Option<bool>,
|
||||||
}
|
}
|
||||||
|
|
||||||
lazy_static! {
|
static PRINT_OPTS: std::sync::Mutex<PrinterOptions> =
|
||||||
static ref PRINT_OPTS: std::sync::Mutex<PrinterOptions> =
|
std::sync::Mutex::new(PrinterOptions::const_default());
|
||||||
std::sync::Mutex::new(Default::default());
|
|
||||||
|
impl PrinterOptions {
|
||||||
|
// We cannot use the default trait as it's not const.
|
||||||
|
const fn const_default() -> Self {
|
||||||
|
Self {
|
||||||
|
precision: 4,
|
||||||
|
threshold: 1000,
|
||||||
|
edge_items: 3,
|
||||||
|
line_width: 80,
|
||||||
|
sci_mode: None,
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn set_print_options(options: PrinterOptions) {
|
pub fn set_print_options(options: PrinterOptions) {
|
||||||
@ -91,7 +83,7 @@ pub fn set_print_options(options: PrinterOptions) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
pub fn set_print_options_default() {
|
pub fn set_print_options_default() {
|
||||||
*PRINT_OPTS.lock().unwrap() = Default::default()
|
*PRINT_OPTS.lock().unwrap() = PrinterOptions::const_default()
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn set_print_options_short() {
|
pub fn set_print_options_short() {
|
||||||
@ -114,122 +106,6 @@ pub fn set_print_options_full() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Default for PrinterOptions {
|
|
||||||
fn default() -> Self {
|
|
||||||
Self {
|
|
||||||
precision: 4,
|
|
||||||
threshold: 1000,
|
|
||||||
edge_items: 3,
|
|
||||||
line_width: 80,
|
|
||||||
sci_mode: None,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
trait TensorFormatter {
|
|
||||||
type Elem;
|
|
||||||
|
|
||||||
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result;
|
|
||||||
|
|
||||||
fn value(tensor: &Tensor) -> Self::Elem;
|
|
||||||
|
|
||||||
fn values(tensor: &Tensor) -> Vec<Self::Elem>;
|
|
||||||
|
|
||||||
fn max_width(&self, to_display: &Tensor) -> usize {
|
|
||||||
let mut max_width = 1;
|
|
||||||
for v in Self::values(to_display) {
|
|
||||||
let mut fmt_size = FmtSize::new();
|
|
||||||
let _res = self.fmt(v, 1, &mut fmt_size);
|
|
||||||
max_width = usize::max(max_width, fmt_size.final_size())
|
|
||||||
}
|
|
||||||
max_width
|
|
||||||
}
|
|
||||||
|
|
||||||
fn write_newline_indent(i: usize, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
|
||||||
writeln!(f)?;
|
|
||||||
for _ in 0..i {
|
|
||||||
write!(f, " ")?
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
fn fmt_tensor(
|
|
||||||
&self,
|
|
||||||
t: &Tensor,
|
|
||||||
indent: usize,
|
|
||||||
max_w: usize,
|
|
||||||
summarize: bool,
|
|
||||||
po: &PrinterOptions,
|
|
||||||
f: &mut std::fmt::Formatter,
|
|
||||||
) -> std::fmt::Result {
|
|
||||||
let size = t.size();
|
|
||||||
let edge_items = po.edge_items as i64;
|
|
||||||
write!(f, "[")?;
|
|
||||||
match size.as_slice() {
|
|
||||||
[] => self.fmt(Self::value(t), max_w, f)?,
|
|
||||||
[v] if summarize && *v > 2 * edge_items => {
|
|
||||||
for v in Self::values(&t.slice(0, None, Some(edge_items), 1)).into_iter() {
|
|
||||||
self.fmt(v, max_w, f)?;
|
|
||||||
write!(f, ", ")?;
|
|
||||||
}
|
|
||||||
write!(f, "...")?;
|
|
||||||
for v in Self::values(&t.slice(0, Some(-edge_items), None, 1)).into_iter() {
|
|
||||||
write!(f, ", ")?;
|
|
||||||
self.fmt(v, max_w, f)?
|
|
||||||
}
|
|
||||||
}
|
|
||||||
[_] => {
|
|
||||||
let elements_per_line = usize::max(1, po.line_width / (max_w + 2));
|
|
||||||
for (i, v) in Self::values(t).into_iter().enumerate() {
|
|
||||||
if i > 0 {
|
|
||||||
if i % elements_per_line == 0 {
|
|
||||||
write!(f, ",")?;
|
|
||||||
Self::write_newline_indent(indent, f)?
|
|
||||||
} else {
|
|
||||||
write!(f, ", ")?;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
self.fmt(v, max_w, f)?
|
|
||||||
}
|
|
||||||
}
|
|
||||||
_ => {
|
|
||||||
if summarize && size[0] > 2 * edge_items {
|
|
||||||
for i in 0..edge_items {
|
|
||||||
self.fmt_tensor(&t.get(i), indent + 1, max_w, summarize, po, f)?;
|
|
||||||
write!(f, ",")?;
|
|
||||||
Self::write_newline_indent(indent, f)?
|
|
||||||
}
|
|
||||||
write!(f, "...")?;
|
|
||||||
Self::write_newline_indent(indent, f)?;
|
|
||||||
for i in size[0] - edge_items..size[0] {
|
|
||||||
self.fmt_tensor(&t.get(i), indent + 1, max_w, summarize, po, f)?;
|
|
||||||
if i + 1 != size[0] {
|
|
||||||
write!(f, ",")?;
|
|
||||||
Self::write_newline_indent(indent, f)?
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
for i in 0..size[0] {
|
|
||||||
self.fmt_tensor(&t.get(i), indent + 1, max_w, summarize, po, f)?;
|
|
||||||
if i + 1 != size[0] {
|
|
||||||
write!(f, ",")?;
|
|
||||||
Self::write_newline_indent(indent, f)?
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
write!(f, "]")?;
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
struct FloatFormatter {
|
|
||||||
int_mode: bool,
|
|
||||||
sci_mode: bool,
|
|
||||||
precision: usize,
|
|
||||||
}
|
|
||||||
|
|
||||||
struct FmtSize {
|
struct FmtSize {
|
||||||
current_size: usize,
|
current_size: usize,
|
||||||
}
|
}
|
||||||
@ -251,26 +127,161 @@ impl std::fmt::Write for FmtSize {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl FloatFormatter {
|
trait TensorFormatter {
|
||||||
fn new(t: &Tensor, po: &PrinterOptions) -> Self {
|
type Elem: WithDType;
|
||||||
|
|
||||||
|
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result;
|
||||||
|
|
||||||
|
fn max_width(&self, to_display: &Tensor) -> usize {
|
||||||
|
let mut max_width = 1;
|
||||||
|
if let Ok(vs) = to_display.flatten_all().and_then(|t| t.to_vec1()) {
|
||||||
|
for &v in vs.iter() {
|
||||||
|
let mut fmt_size = FmtSize::new();
|
||||||
|
let _res = self.fmt(v, 1, &mut fmt_size);
|
||||||
|
max_width = usize::max(max_width, fmt_size.final_size())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
max_width
|
||||||
|
}
|
||||||
|
|
||||||
|
fn write_newline_indent(i: usize, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
||||||
|
writeln!(f)?;
|
||||||
|
for _ in 0..i {
|
||||||
|
write!(f, " ")?
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn fmt_tensor(
|
||||||
|
&self,
|
||||||
|
t: &Tensor,
|
||||||
|
indent: usize,
|
||||||
|
max_w: usize,
|
||||||
|
summarize: bool,
|
||||||
|
po: &PrinterOptions,
|
||||||
|
f: &mut std::fmt::Formatter,
|
||||||
|
) -> std::fmt::Result {
|
||||||
|
let dims = t.dims();
|
||||||
|
let edge_items = po.edge_items;
|
||||||
|
write!(f, "[")?;
|
||||||
|
match dims {
|
||||||
|
[] => {
|
||||||
|
if let Ok(v) = t.to_scalar::<Self::Elem>() {
|
||||||
|
self.fmt(v, max_w, f)?
|
||||||
|
}
|
||||||
|
}
|
||||||
|
[v] if summarize && *v > 2 * edge_items => {
|
||||||
|
if let Ok(vs) = t
|
||||||
|
.narrow(0, 0, edge_items)
|
||||||
|
.and_then(|t| t.to_vec1::<Self::Elem>())
|
||||||
|
{
|
||||||
|
for v in vs.into_iter() {
|
||||||
|
self.fmt(v, max_w, f)?;
|
||||||
|
write!(f, ", ")?;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
write!(f, "...")?;
|
||||||
|
if let Ok(vs) = t
|
||||||
|
.narrow(0, v - edge_items, edge_items)
|
||||||
|
.and_then(|t| t.to_vec1::<Self::Elem>())
|
||||||
|
{
|
||||||
|
for v in vs.into_iter() {
|
||||||
|
self.fmt(v, max_w, f)?;
|
||||||
|
write!(f, ", ")?;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
[_] => {
|
||||||
|
let elements_per_line = usize::max(1, po.line_width / (max_w + 2));
|
||||||
|
if let Ok(vs) = t.to_vec1::<Self::Elem>() {
|
||||||
|
for (i, v) in vs.into_iter().enumerate() {
|
||||||
|
if i > 0 {
|
||||||
|
if i % elements_per_line == 0 {
|
||||||
|
write!(f, ",")?;
|
||||||
|
Self::write_newline_indent(indent, f)?
|
||||||
|
} else {
|
||||||
|
write!(f, ", ")?;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
self.fmt(v, max_w, f)?
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
_ => {
|
||||||
|
if summarize && dims[0] > 2 * edge_items {
|
||||||
|
for i in 0..edge_items {
|
||||||
|
match t.get(i) {
|
||||||
|
Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?,
|
||||||
|
Err(e) => write!(f, "{e:?}")?,
|
||||||
|
}
|
||||||
|
write!(f, ",")?;
|
||||||
|
Self::write_newline_indent(indent, f)?
|
||||||
|
}
|
||||||
|
write!(f, "...")?;
|
||||||
|
Self::write_newline_indent(indent, f)?;
|
||||||
|
for i in dims[0] - edge_items..dims[0] {
|
||||||
|
match t.get(i) {
|
||||||
|
Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?,
|
||||||
|
Err(e) => write!(f, "{e:?}")?,
|
||||||
|
}
|
||||||
|
if i + 1 != dims[0] {
|
||||||
|
write!(f, ",")?;
|
||||||
|
Self::write_newline_indent(indent, f)?
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for i in 0..dims[0] {
|
||||||
|
match t.get(i) {
|
||||||
|
Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?,
|
||||||
|
Err(e) => write!(f, "{e:?}")?,
|
||||||
|
}
|
||||||
|
if i + 1 != dims[0] {
|
||||||
|
write!(f, ",")?;
|
||||||
|
Self::write_newline_indent(indent, f)?
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
write!(f, "]")?;
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
struct FloatFormatter<S: WithDType> {
|
||||||
|
int_mode: bool,
|
||||||
|
sci_mode: bool,
|
||||||
|
precision: usize,
|
||||||
|
_phantom: std::marker::PhantomData<S>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<S> FloatFormatter<S>
|
||||||
|
where
|
||||||
|
S: WithDType + num_traits::Float,
|
||||||
|
{
|
||||||
|
fn new(t: &Tensor, po: &PrinterOptions) -> Result<Self> {
|
||||||
let mut int_mode = true;
|
let mut int_mode = true;
|
||||||
let mut sci_mode = false;
|
let mut sci_mode = false;
|
||||||
|
|
||||||
let _guard = crate::no_grad_guard();
|
|
||||||
let t = t.to_device(crate::Device::Cpu);
|
|
||||||
|
|
||||||
// Rather than containing all values, this should only include
|
// Rather than containing all values, this should only include
|
||||||
// values that end up being displayed according to [threshold].
|
// values that end up being displayed according to [threshold].
|
||||||
let nonzero_finite_vals = {
|
let values = t
|
||||||
let t = t.reshape([-1]);
|
.flatten_all()?
|
||||||
t.masked_select(&t.isfinite().logical_and(&t.ne(0.)))
|
.to_vec1()?
|
||||||
};
|
.into_iter()
|
||||||
|
.filter(|v: &S| v.is_finite() && !v.is_zero())
|
||||||
let values = Vec::<f64>::try_from(&nonzero_finite_vals).unwrap();
|
.collect::<Vec<_>>();
|
||||||
if nonzero_finite_vals.numel() > 0 {
|
if !values.is_empty() {
|
||||||
let nonzero_finite_abs = nonzero_finite_vals.abs();
|
let mut nonzero_finite_min = S::max_value();
|
||||||
let nonzero_finite_min = nonzero_finite_abs.min().double_value(&[]);
|
let mut nonzero_finite_max = S::min_value();
|
||||||
let nonzero_finite_max = nonzero_finite_abs.max().double_value(&[]);
|
for &v in values.iter() {
|
||||||
|
if v < nonzero_finite_min {
|
||||||
|
nonzero_finite_min = v
|
||||||
|
}
|
||||||
|
if v > nonzero_finite_max {
|
||||||
|
nonzero_finite_max = v
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
for &value in values.iter() {
|
for &value in values.iter() {
|
||||||
if value.ceil() != value {
|
if value.ceil() != value {
|
||||||
@ -279,25 +290,35 @@ impl FloatFormatter {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
sci_mode = nonzero_finite_max / nonzero_finite_min > 1000.
|
if let Some(v1) = S::from(1000.) {
|
||||||
|| nonzero_finite_max > 1e8
|
if let Some(v2) = S::from(1e8) {
|
||||||
|| nonzero_finite_min < 1e-4
|
if let Some(v3) = S::from(1e-4) {
|
||||||
|
sci_mode = nonzero_finite_max / nonzero_finite_min > v1
|
||||||
|
|| nonzero_finite_max > v2
|
||||||
|
|| nonzero_finite_min < v3
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
match po.sci_mode {
|
match po.sci_mode {
|
||||||
None => {}
|
None => {}
|
||||||
Some(v) => sci_mode = v,
|
Some(v) => sci_mode = v,
|
||||||
}
|
}
|
||||||
Self {
|
Ok(Self {
|
||||||
int_mode,
|
int_mode,
|
||||||
sci_mode,
|
sci_mode,
|
||||||
precision: po.precision,
|
precision: po.precision,
|
||||||
}
|
_phantom: std::marker::PhantomData,
|
||||||
|
})
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl TensorFormatter for FloatFormatter {
|
impl<S> TensorFormatter for FloatFormatter<S>
|
||||||
type Elem = f64;
|
where
|
||||||
|
S: WithDType + num_traits::Float + std::fmt::Display + std::fmt::LowerExp,
|
||||||
|
{
|
||||||
|
type Elem = S;
|
||||||
|
|
||||||
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result {
|
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result {
|
||||||
if self.sci_mode {
|
if self.sci_mode {
|
||||||
@ -324,125 +345,111 @@ impl TensorFormatter for FloatFormatter {
|
|||||||
)
|
)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn value(tensor: &Tensor) -> Self::Elem {
|
|
||||||
tensor.double_value(&[])
|
|
||||||
}
|
}
|
||||||
|
|
||||||
fn values(tensor: &Tensor) -> Vec<Self::Elem> {
|
struct IntFormatter<S: WithDType> {
|
||||||
Vec::<Self::Elem>::try_from(tensor.reshape(-1)).unwrap()
|
_phantom: std::marker::PhantomData<S>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<S: WithDType> IntFormatter<S> {
|
||||||
|
fn new() -> Self {
|
||||||
|
Self {
|
||||||
|
_phantom: std::marker::PhantomData,
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
struct IntFormatter;
|
impl<S> TensorFormatter for IntFormatter<S>
|
||||||
|
where
|
||||||
impl TensorFormatter for IntFormatter {
|
S: WithDType + std::fmt::Display,
|
||||||
type Elem = i64;
|
{
|
||||||
|
type Elem = S;
|
||||||
|
|
||||||
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result {
|
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result {
|
||||||
write!(f, "{v:max_w$}")
|
write!(f, "{v:max_w$}")
|
||||||
}
|
}
|
||||||
|
|
||||||
fn value(tensor: &Tensor) -> Self::Elem {
|
|
||||||
tensor.int64_value(&[])
|
|
||||||
}
|
}
|
||||||
|
|
||||||
fn values(tensor: &Tensor) -> Vec<Self::Elem> {
|
fn get_summarized_data(t: &Tensor, edge_items: usize) -> Result<Tensor> {
|
||||||
Vec::<Self::Elem>::try_from(tensor.reshape(-1)).unwrap()
|
let dims = t.dims();
|
||||||
}
|
if dims.is_empty() {
|
||||||
}
|
Ok(t.clone())
|
||||||
|
} else if dims.len() == 1 {
|
||||||
struct BoolFormatter;
|
if dims[0] > 2 * edge_items {
|
||||||
|
|
||||||
impl TensorFormatter for BoolFormatter {
|
|
||||||
type Elem = bool;
|
|
||||||
|
|
||||||
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result {
|
|
||||||
let v = if v { "true" } else { "false" };
|
|
||||||
write!(f, "{v:max_w$}")
|
|
||||||
}
|
|
||||||
|
|
||||||
fn value(tensor: &Tensor) -> Self::Elem {
|
|
||||||
tensor.int64_value(&[]) != 0
|
|
||||||
}
|
|
||||||
|
|
||||||
fn values(tensor: &Tensor) -> Vec<Self::Elem> {
|
|
||||||
Vec::<Self::Elem>::try_from(tensor.reshape(-1)).unwrap()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn get_summarized_data(t: &Tensor, edge_items: i64) -> Tensor {
|
|
||||||
let size = t.size();
|
|
||||||
if size.is_empty() {
|
|
||||||
t.shallow_clone()
|
|
||||||
} else if size.len() == 1 {
|
|
||||||
if size[0] > 2 * edge_items {
|
|
||||||
Tensor::cat(
|
Tensor::cat(
|
||||||
&[
|
&[
|
||||||
t.slice(0, None, Some(edge_items), 1),
|
t.narrow(0, 0, edge_items)?,
|
||||||
t.slice(0, Some(-edge_items), None, 1),
|
t.narrow(0, dims[0] - edge_items, edge_items)?,
|
||||||
],
|
],
|
||||||
0,
|
0,
|
||||||
)
|
)
|
||||||
} else {
|
} else {
|
||||||
t.shallow_clone()
|
Ok(t.clone())
|
||||||
}
|
}
|
||||||
} else if size[0] > 2 * edge_items {
|
} else if dims[0] > 2 * edge_items {
|
||||||
let mut vs: Vec<_> = (0..edge_items)
|
let mut vs: Vec<_> = (0..edge_items)
|
||||||
.map(|i| get_summarized_data(&t.get(i), edge_items))
|
.map(|i| get_summarized_data(&t.get(i)?, edge_items))
|
||||||
.collect();
|
.collect::<Result<Vec<_>>>()?;
|
||||||
for i in (size[0] - edge_items)..size[0] {
|
for i in (dims[0] - edge_items)..dims[0] {
|
||||||
vs.push(get_summarized_data(&t.get(i), edge_items))
|
vs.push(get_summarized_data(&t.get(i)?, edge_items)?)
|
||||||
}
|
}
|
||||||
Tensor::stack(&vs, 0)
|
Tensor::cat(&vs, 0)
|
||||||
} else {
|
} else {
|
||||||
let vs: Vec<_> = (0..size[0])
|
let vs: Vec<_> = (0..dims[0])
|
||||||
.map(|i| get_summarized_data(&t.get(i), edge_items))
|
.map(|i| get_summarized_data(&t.get(i)?, edge_items))
|
||||||
.collect();
|
.collect::<Result<Vec<_>>>()?;
|
||||||
Tensor::stack(&vs, 0)
|
Tensor::cat(&vs, 0)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl std::fmt::Display for Tensor {
|
impl std::fmt::Display for Tensor {
|
||||||
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
||||||
if self.defined() {
|
|
||||||
let po = PRINT_OPTS.lock().unwrap();
|
let po = PRINT_OPTS.lock().unwrap();
|
||||||
let summarize = self.numel() > po.threshold;
|
let summarize = self.elem_count() > po.threshold;
|
||||||
let basic_kind = BasicKind::for_tensor(self);
|
|
||||||
let to_display = if summarize {
|
let to_display = if summarize {
|
||||||
get_summarized_data(self, po.edge_items as i64)
|
match get_summarized_data(self, po.edge_items) {
|
||||||
|
Ok(v) => v,
|
||||||
|
Err(err) => return write!(f, "{err:?}"),
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
self.shallow_clone()
|
self.clone()
|
||||||
};
|
};
|
||||||
match basic_kind {
|
match self.dtype() {
|
||||||
BasicKind::Int => {
|
DType::U32 => {
|
||||||
let tf = IntFormatter;
|
let tf: IntFormatter<u32> = IntFormatter::new();
|
||||||
let max_w = tf.max_width(&to_display);
|
let max_w = tf.max_width(&to_display);
|
||||||
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
||||||
writeln!(f)?;
|
writeln!(f)?;
|
||||||
}
|
}
|
||||||
BasicKind::Float => {
|
DType::BF16 => {
|
||||||
let tf = FloatFormatter::new(&to_display, &po);
|
if let Ok(tf) = FloatFormatter::<bf16>::new(&to_display, &po) {
|
||||||
let max_w = tf.max_width(&to_display);
|
let max_w = tf.max_width(&to_display);
|
||||||
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
||||||
writeln!(f)?;
|
writeln!(f)?;
|
||||||
}
|
}
|
||||||
BasicKind::Bool => {
|
}
|
||||||
let tf = BoolFormatter;
|
DType::F16 => {
|
||||||
|
if let Ok(tf) = FloatFormatter::<f16>::new(&to_display, &po) {
|
||||||
let max_w = tf.max_width(&to_display);
|
let max_w = tf.max_width(&to_display);
|
||||||
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
||||||
writeln!(f)?;
|
writeln!(f)?;
|
||||||
}
|
}
|
||||||
BasicKind::Complex => {}
|
}
|
||||||
|
DType::F64 => {
|
||||||
|
if let Ok(tf) = FloatFormatter::<f64>::new(&to_display, &po) {
|
||||||
|
let max_w = tf.max_width(&to_display);
|
||||||
|
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
||||||
|
writeln!(f)?;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
DType::F32 => {
|
||||||
|
if let Ok(tf) = FloatFormatter::<f32>::new(&to_display, &po) {
|
||||||
|
let max_w = tf.max_width(&to_display);
|
||||||
|
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
||||||
|
writeln!(f)?;
|
||||||
|
}
|
||||||
|
}
|
||||||
};
|
};
|
||||||
let kind = match self.f_kind() {
|
write!(f, "Tensor[{:?}, {}]", self.dims(), self.dtype().as_str())
|
||||||
Ok(kind) => format!("{kind:?}"),
|
|
||||||
Err(err) => format!("{err:?}"),
|
|
||||||
};
|
|
||||||
write!(f, "Tensor[{:?}, {}]", self.size(), kind)
|
|
||||||
} else {
|
|
||||||
write!(f, "Tensor[Undefined]")
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
*/
|
|
||||||
|
@ -3,7 +3,7 @@ mod cpu_backend;
|
|||||||
#[cfg(feature = "cuda")]
|
#[cfg(feature = "cuda")]
|
||||||
mod cuda_backend;
|
mod cuda_backend;
|
||||||
mod device;
|
mod device;
|
||||||
mod display;
|
pub mod display;
|
||||||
mod dtype;
|
mod dtype;
|
||||||
mod dummy_cuda_backend;
|
mod dummy_cuda_backend;
|
||||||
mod error;
|
mod error;
|
||||||
@ -13,7 +13,7 @@ mod shape;
|
|||||||
mod storage;
|
mod storage;
|
||||||
mod strided_index;
|
mod strided_index;
|
||||||
mod tensor;
|
mod tensor;
|
||||||
mod utils;
|
pub mod utils;
|
||||||
|
|
||||||
pub use cpu_backend::CpuStorage;
|
pub use cpu_backend::CpuStorage;
|
||||||
pub use device::{Device, DeviceLocation};
|
pub use device::{Device, DeviceLocation};
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
use std::str::FromStr;
|
use std::str::FromStr;
|
||||||
|
|
||||||
pub(crate) fn get_num_threads() -> usize {
|
pub fn get_num_threads() -> usize {
|
||||||
// Respond to the same environment variable as rayon.
|
// Respond to the same environment variable as rayon.
|
||||||
match std::env::var("RAYON_NUM_THREADS")
|
match std::env::var("RAYON_NUM_THREADS")
|
||||||
.ok()
|
.ok()
|
||||||
|
Reference in New Issue
Block a user