PyTorch like display implementation.

This commit is contained in:
laurent
2023-06-27 21:16:35 +01:00
parent 934655a60d
commit 8c81a70170
3 changed files with 265 additions and 258 deletions

View File

@ -1,7 +1,7 @@
/// Pretty printing of tensors
/// This implementation should be in line with the PyTorch version.
/// https://github.com/pytorch/pytorch/blob/7b419e8513a024e172eae767e24ec1b849976b13/torch/_tensor_str.py
use crate::{DType, Tensor, WithDType};
use crate::{DType, Result, Tensor, WithDType};
use half::{bf16, f16};
impl Tensor {
@ -52,26 +52,7 @@ impl std::fmt::Debug for Tensor {
}
}
/*
#[allow(dead_code)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum BasicKind {
Float,
Int,
Bool,
Complex,
}
impl BasicKind {
fn for_tensor(t: &Tensor) -> BasicKind {
match t.dtype() {
DType::U32 => BasicKind::Int,
DType::BF16 | DType::F16 | DType::F32 | DType::F64 => BasicKind::Float,
}
}
}
/// Options for Tensor pretty printing
pub struct PrinterOptions {
precision: usize,
@ -81,9 +62,20 @@ pub struct PrinterOptions {
sci_mode: Option<bool>,
}
lazy_static! {
static ref PRINT_OPTS: std::sync::Mutex<PrinterOptions> =
std::sync::Mutex::new(Default::default());
static PRINT_OPTS: std::sync::Mutex<PrinterOptions> =
std::sync::Mutex::new(PrinterOptions::const_default());
impl PrinterOptions {
// We cannot use the default trait as it's not const.
const fn const_default() -> Self {
Self {
precision: 4,
threshold: 1000,
edge_items: 3,
line_width: 80,
sci_mode: None,
}
}
}
pub fn set_print_options(options: PrinterOptions) {
@ -91,7 +83,7 @@ pub fn set_print_options(options: PrinterOptions) {
}
pub fn set_print_options_default() {
*PRINT_OPTS.lock().unwrap() = Default::default()
*PRINT_OPTS.lock().unwrap() = PrinterOptions::const_default()
}
pub fn set_print_options_short() {
@ -114,122 +106,6 @@ pub fn set_print_options_full() {
}
}
impl Default for PrinterOptions {
fn default() -> Self {
Self {
precision: 4,
threshold: 1000,
edge_items: 3,
line_width: 80,
sci_mode: None,
}
}
}
trait TensorFormatter {
type Elem;
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result;
fn value(tensor: &Tensor) -> Self::Elem;
fn values(tensor: &Tensor) -> Vec<Self::Elem>;
fn max_width(&self, to_display: &Tensor) -> usize {
let mut max_width = 1;
for v in Self::values(to_display) {
let mut fmt_size = FmtSize::new();
let _res = self.fmt(v, 1, &mut fmt_size);
max_width = usize::max(max_width, fmt_size.final_size())
}
max_width
}
fn write_newline_indent(i: usize, f: &mut std::fmt::Formatter) -> std::fmt::Result {
writeln!(f)?;
for _ in 0..i {
write!(f, " ")?
}
Ok(())
}
fn fmt_tensor(
&self,
t: &Tensor,
indent: usize,
max_w: usize,
summarize: bool,
po: &PrinterOptions,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
let size = t.size();
let edge_items = po.edge_items as i64;
write!(f, "[")?;
match size.as_slice() {
[] => self.fmt(Self::value(t), max_w, f)?,
[v] if summarize && *v > 2 * edge_items => {
for v in Self::values(&t.slice(0, None, Some(edge_items), 1)).into_iter() {
self.fmt(v, max_w, f)?;
write!(f, ", ")?;
}
write!(f, "...")?;
for v in Self::values(&t.slice(0, Some(-edge_items), None, 1)).into_iter() {
write!(f, ", ")?;
self.fmt(v, max_w, f)?
}
}
[_] => {
let elements_per_line = usize::max(1, po.line_width / (max_w + 2));
for (i, v) in Self::values(t).into_iter().enumerate() {
if i > 0 {
if i % elements_per_line == 0 {
write!(f, ",")?;
Self::write_newline_indent(indent, f)?
} else {
write!(f, ", ")?;
}
}
self.fmt(v, max_w, f)?
}
}
_ => {
if summarize && size[0] > 2 * edge_items {
for i in 0..edge_items {
self.fmt_tensor(&t.get(i), indent + 1, max_w, summarize, po, f)?;
write!(f, ",")?;
Self::write_newline_indent(indent, f)?
}
write!(f, "...")?;
Self::write_newline_indent(indent, f)?;
for i in size[0] - edge_items..size[0] {
self.fmt_tensor(&t.get(i), indent + 1, max_w, summarize, po, f)?;
if i + 1 != size[0] {
write!(f, ",")?;
Self::write_newline_indent(indent, f)?
}
}
} else {
for i in 0..size[0] {
self.fmt_tensor(&t.get(i), indent + 1, max_w, summarize, po, f)?;
if i + 1 != size[0] {
write!(f, ",")?;
Self::write_newline_indent(indent, f)?
}
}
}
}
}
write!(f, "]")?;
Ok(())
}
}
struct FloatFormatter {
int_mode: bool,
sci_mode: bool,
precision: usize,
}
struct FmtSize {
current_size: usize,
}
@ -251,26 +127,161 @@ impl std::fmt::Write for FmtSize {
}
}
impl FloatFormatter {
fn new(t: &Tensor, po: &PrinterOptions) -> Self {
trait TensorFormatter {
type Elem: WithDType;
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result;
fn max_width(&self, to_display: &Tensor) -> usize {
let mut max_width = 1;
if let Ok(vs) = to_display.flatten_all().and_then(|t| t.to_vec1()) {
for &v in vs.iter() {
let mut fmt_size = FmtSize::new();
let _res = self.fmt(v, 1, &mut fmt_size);
max_width = usize::max(max_width, fmt_size.final_size())
}
}
max_width
}
fn write_newline_indent(i: usize, f: &mut std::fmt::Formatter) -> std::fmt::Result {
writeln!(f)?;
for _ in 0..i {
write!(f, " ")?
}
Ok(())
}
fn fmt_tensor(
&self,
t: &Tensor,
indent: usize,
max_w: usize,
summarize: bool,
po: &PrinterOptions,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
let dims = t.dims();
let edge_items = po.edge_items;
write!(f, "[")?;
match dims {
[] => {
if let Ok(v) = t.to_scalar::<Self::Elem>() {
self.fmt(v, max_w, f)?
}
}
[v] if summarize && *v > 2 * edge_items => {
if let Ok(vs) = t
.narrow(0, 0, edge_items)
.and_then(|t| t.to_vec1::<Self::Elem>())
{
for v in vs.into_iter() {
self.fmt(v, max_w, f)?;
write!(f, ", ")?;
}
}
write!(f, "...")?;
if let Ok(vs) = t
.narrow(0, v - edge_items, edge_items)
.and_then(|t| t.to_vec1::<Self::Elem>())
{
for v in vs.into_iter() {
self.fmt(v, max_w, f)?;
write!(f, ", ")?;
}
}
}
[_] => {
let elements_per_line = usize::max(1, po.line_width / (max_w + 2));
if let Ok(vs) = t.to_vec1::<Self::Elem>() {
for (i, v) in vs.into_iter().enumerate() {
if i > 0 {
if i % elements_per_line == 0 {
write!(f, ",")?;
Self::write_newline_indent(indent, f)?
} else {
write!(f, ", ")?;
}
}
self.fmt(v, max_w, f)?
}
}
}
_ => {
if summarize && dims[0] > 2 * edge_items {
for i in 0..edge_items {
match t.get(i) {
Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?,
Err(e) => write!(f, "{e:?}")?,
}
write!(f, ",")?;
Self::write_newline_indent(indent, f)?
}
write!(f, "...")?;
Self::write_newline_indent(indent, f)?;
for i in dims[0] - edge_items..dims[0] {
match t.get(i) {
Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?,
Err(e) => write!(f, "{e:?}")?,
}
if i + 1 != dims[0] {
write!(f, ",")?;
Self::write_newline_indent(indent, f)?
}
}
} else {
for i in 0..dims[0] {
match t.get(i) {
Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?,
Err(e) => write!(f, "{e:?}")?,
}
if i + 1 != dims[0] {
write!(f, ",")?;
Self::write_newline_indent(indent, f)?
}
}
}
}
}
write!(f, "]")?;
Ok(())
}
}
struct FloatFormatter<S: WithDType> {
int_mode: bool,
sci_mode: bool,
precision: usize,
_phantom: std::marker::PhantomData<S>,
}
impl<S> FloatFormatter<S>
where
S: WithDType + num_traits::Float,
{
fn new(t: &Tensor, po: &PrinterOptions) -> Result<Self> {
let mut int_mode = true;
let mut sci_mode = false;
let _guard = crate::no_grad_guard();
let t = t.to_device(crate::Device::Cpu);
// Rather than containing all values, this should only include
// values that end up being displayed according to [threshold].
let nonzero_finite_vals = {
let t = t.reshape([-1]);
t.masked_select(&t.isfinite().logical_and(&t.ne(0.)))
};
let values = Vec::<f64>::try_from(&nonzero_finite_vals).unwrap();
if nonzero_finite_vals.numel() > 0 {
let nonzero_finite_abs = nonzero_finite_vals.abs();
let nonzero_finite_min = nonzero_finite_abs.min().double_value(&[]);
let nonzero_finite_max = nonzero_finite_abs.max().double_value(&[]);
let values = t
.flatten_all()?
.to_vec1()?
.into_iter()
.filter(|v: &S| v.is_finite() && !v.is_zero())
.collect::<Vec<_>>();
if !values.is_empty() {
let mut nonzero_finite_min = S::max_value();
let mut nonzero_finite_max = S::min_value();
for &v in values.iter() {
if v < nonzero_finite_min {
nonzero_finite_min = v
}
if v > nonzero_finite_max {
nonzero_finite_max = v
}
}
for &value in values.iter() {
if value.ceil() != value {
@ -279,25 +290,35 @@ impl FloatFormatter {
}
}
sci_mode = nonzero_finite_max / nonzero_finite_min > 1000.
|| nonzero_finite_max > 1e8
|| nonzero_finite_min < 1e-4
if let Some(v1) = S::from(1000.) {
if let Some(v2) = S::from(1e8) {
if let Some(v3) = S::from(1e-4) {
sci_mode = nonzero_finite_max / nonzero_finite_min > v1
|| nonzero_finite_max > v2
|| nonzero_finite_min < v3
}
}
}
}
match po.sci_mode {
None => {}
Some(v) => sci_mode = v,
}
Self {
Ok(Self {
int_mode,
sci_mode,
precision: po.precision,
}
_phantom: std::marker::PhantomData,
})
}
}
impl TensorFormatter for FloatFormatter {
type Elem = f64;
impl<S> TensorFormatter for FloatFormatter<S>
where
S: WithDType + num_traits::Float + std::fmt::Display + std::fmt::LowerExp,
{
type Elem = S;
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result {
if self.sci_mode {
@ -324,125 +345,111 @@ impl TensorFormatter for FloatFormatter {
)
}
}
}
fn value(tensor: &Tensor) -> Self::Elem {
tensor.double_value(&[])
}
struct IntFormatter<S: WithDType> {
_phantom: std::marker::PhantomData<S>,
}
fn values(tensor: &Tensor) -> Vec<Self::Elem> {
Vec::<Self::Elem>::try_from(tensor.reshape(-1)).unwrap()
impl<S: WithDType> IntFormatter<S> {
fn new() -> Self {
Self {
_phantom: std::marker::PhantomData,
}
}
}
struct IntFormatter;
impl TensorFormatter for IntFormatter {
type Elem = i64;
impl<S> TensorFormatter for IntFormatter<S>
where
S: WithDType + std::fmt::Display,
{
type Elem = S;
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result {
write!(f, "{v:max_w$}")
}
fn value(tensor: &Tensor) -> Self::Elem {
tensor.int64_value(&[])
}
fn values(tensor: &Tensor) -> Vec<Self::Elem> {
Vec::<Self::Elem>::try_from(tensor.reshape(-1)).unwrap()
}
}
struct BoolFormatter;
impl TensorFormatter for BoolFormatter {
type Elem = bool;
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result {
let v = if v { "true" } else { "false" };
write!(f, "{v:max_w$}")
}
fn value(tensor: &Tensor) -> Self::Elem {
tensor.int64_value(&[]) != 0
}
fn values(tensor: &Tensor) -> Vec<Self::Elem> {
Vec::<Self::Elem>::try_from(tensor.reshape(-1)).unwrap()
}
}
fn get_summarized_data(t: &Tensor, edge_items: i64) -> Tensor {
let size = t.size();
if size.is_empty() {
t.shallow_clone()
} else if size.len() == 1 {
if size[0] > 2 * edge_items {
fn get_summarized_data(t: &Tensor, edge_items: usize) -> Result<Tensor> {
let dims = t.dims();
if dims.is_empty() {
Ok(t.clone())
} else if dims.len() == 1 {
if dims[0] > 2 * edge_items {
Tensor::cat(
&[
t.slice(0, None, Some(edge_items), 1),
t.slice(0, Some(-edge_items), None, 1),
t.narrow(0, 0, edge_items)?,
t.narrow(0, dims[0] - edge_items, edge_items)?,
],
0,
)
} else {
t.shallow_clone()
Ok(t.clone())
}
} else if size[0] > 2 * edge_items {
} else if dims[0] > 2 * edge_items {
let mut vs: Vec<_> = (0..edge_items)
.map(|i| get_summarized_data(&t.get(i), edge_items))
.collect();
for i in (size[0] - edge_items)..size[0] {
vs.push(get_summarized_data(&t.get(i), edge_items))
.map(|i| get_summarized_data(&t.get(i)?, edge_items))
.collect::<Result<Vec<_>>>()?;
for i in (dims[0] - edge_items)..dims[0] {
vs.push(get_summarized_data(&t.get(i)?, edge_items)?)
}
Tensor::stack(&vs, 0)
Tensor::cat(&vs, 0)
} else {
let vs: Vec<_> = (0..size[0])
.map(|i| get_summarized_data(&t.get(i), edge_items))
.collect();
Tensor::stack(&vs, 0)
let vs: Vec<_> = (0..dims[0])
.map(|i| get_summarized_data(&t.get(i)?, edge_items))
.collect::<Result<Vec<_>>>()?;
Tensor::cat(&vs, 0)
}
}
impl std::fmt::Display for Tensor {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
if self.defined() {
let po = PRINT_OPTS.lock().unwrap();
let summarize = self.numel() > po.threshold;
let basic_kind = BasicKind::for_tensor(self);
let to_display = if summarize {
get_summarized_data(self, po.edge_items as i64)
} else {
self.shallow_clone()
};
match basic_kind {
BasicKind::Int => {
let tf = IntFormatter;
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
BasicKind::Float => {
let tf = FloatFormatter::new(&to_display, &po);
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
BasicKind::Bool => {
let tf = BoolFormatter;
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
BasicKind::Complex => {}
};
let kind = match self.f_kind() {
Ok(kind) => format!("{kind:?}"),
Err(err) => format!("{err:?}"),
};
write!(f, "Tensor[{:?}, {}]", self.size(), kind)
let po = PRINT_OPTS.lock().unwrap();
let summarize = self.elem_count() > po.threshold;
let to_display = if summarize {
match get_summarized_data(self, po.edge_items) {
Ok(v) => v,
Err(err) => return write!(f, "{err:?}"),
}
} else {
write!(f, "Tensor[Undefined]")
}
self.clone()
};
match self.dtype() {
DType::U32 => {
let tf: IntFormatter<u32> = IntFormatter::new();
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
DType::BF16 => {
if let Ok(tf) = FloatFormatter::<bf16>::new(&to_display, &po) {
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
}
DType::F16 => {
if let Ok(tf) = FloatFormatter::<f16>::new(&to_display, &po) {
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
}
DType::F64 => {
if let Ok(tf) = FloatFormatter::<f64>::new(&to_display, &po) {
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
}
DType::F32 => {
if let Ok(tf) = FloatFormatter::<f32>::new(&to_display, &po) {
let max_w = tf.max_width(&to_display);
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
writeln!(f)?;
}
}
};
write!(f, "Tensor[{:?}, {}]", self.dims(), self.dtype().as_str())
}
}
*/

View File

@ -3,7 +3,7 @@ mod cpu_backend;
#[cfg(feature = "cuda")]
mod cuda_backend;
mod device;
mod display;
pub mod display;
mod dtype;
mod dummy_cuda_backend;
mod error;
@ -13,7 +13,7 @@ mod shape;
mod storage;
mod strided_index;
mod tensor;
mod utils;
pub mod utils;
pub use cpu_backend::CpuStorage;
pub use device::{Device, DeviceLocation};

View File

@ -1,6 +1,6 @@
use std::str::FromStr;
pub(crate) fn get_num_threads() -> usize {
pub fn get_num_threads() -> usize {
// Respond to the same environment variable as rayon.
match std::env::var("RAYON_NUM_THREADS")
.ok()