mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 02:38:10 +00:00
Mention VGG in the readme. (#1573)
This commit is contained in:
@ -109,6 +109,9 @@ We also provide a some command line based examples using state of the art models
|
|||||||
- [DINOv2](./candle-examples/examples/dinov2/): computer vision model trained
|
- [DINOv2](./candle-examples/examples/dinov2/): computer vision model trained
|
||||||
using self-supervision (can be used for imagenet classification, depth
|
using self-supervision (can be used for imagenet classification, depth
|
||||||
evaluation, segmentation).
|
evaluation, segmentation).
|
||||||
|
- [VGG](./candle-examples/examples/vgg/),
|
||||||
|
[RepVGG](./candle-examples/examples/repvgg): computer vision models.
|
||||||
|
- [BLIP](./candle-examples/examples/blip/): image to text model, can be used to
|
||||||
- [BLIP](./candle-examples/examples/blip/): image to text model, can be used to
|
- [BLIP](./candle-examples/examples/blip/): image to text model, can be used to
|
||||||
generate captions for an image.
|
generate captions for an image.
|
||||||
- [Marian-MT](./candle-examples/examples/marian-mt/): neural machine translation
|
- [Marian-MT](./candle-examples/examples/marian-mt/): neural machine translation
|
||||||
@ -204,7 +207,7 @@ If you have an addition to this list, please submit a pull request.
|
|||||||
- Image to text.
|
- Image to text.
|
||||||
- BLIP.
|
- BLIP.
|
||||||
- Computer Vision Models.
|
- Computer Vision Models.
|
||||||
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT.
|
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT, VGG, RepVGG.
|
||||||
- yolo-v3, yolo-v8.
|
- yolo-v3, yolo-v8.
|
||||||
- Segment-Anything Model (SAM).
|
- Segment-Anything Model (SAM).
|
||||||
- File formats: load models from safetensors, npz, ggml, or PyTorch files.
|
- File formats: load models from safetensors, npz, ggml, or PyTorch files.
|
||||||
|
@ -1,7 +1,9 @@
|
|||||||
# candle-repvgg
|
# candle-repvgg
|
||||||
|
|
||||||
A candle implementation of inference using a pre-trained [repvgg](https://arxiv.org/abs/2101.03697).
|
[RepVGG: Making VGG-style ConvNets Great Again](https://arxiv.org/abs/2101.03697).
|
||||||
This uses a classification head trained on the ImageNet dataset and returns the
|
|
||||||
|
This candle implementation uses a pre-trained RepVGG network for inference. The
|
||||||
|
classification head has been trained on the ImageNet dataset and returns the
|
||||||
probabilities for the top-5 classes.
|
probabilities for the top-5 classes.
|
||||||
|
|
||||||
## Running an example
|
## Running an example
|
||||||
|
Reference in New Issue
Block a user