batched gemm work

This commit is contained in:
Ivar Flakstad
2024-07-26 18:53:58 +02:00
parent 2a2a349fd4
commit 9105aa4390
5 changed files with 236 additions and 223 deletions

View File

@ -2,11 +2,11 @@ mod benchmarks;
use criterion::criterion_main; use criterion::criterion_main;
criterion_main!( criterion_main!(
benchmarks::affine::benches, //benchmarks::affine::benches,
benchmarks::matmul::benches, benchmarks::matmul::benches,
benchmarks::random::benches, //benchmarks::random::benches,
benchmarks::where_cond::benches, //benchmarks::where_cond::benches,
benchmarks::conv_transpose2d::benches, //benchmarks::conv_transpose2d::benches,
benchmarks::qmatmul::benches, //benchmarks::qmatmul::benches,
benchmarks::unary::benches //benchmarks::unary::benches
); );

View File

@ -44,22 +44,13 @@ constant uint K [[function_constant(2)]];
constant bool A_trans [[function_constant(10)]]; constant bool A_trans [[function_constant(10)]];
constant bool B_trans [[function_constant(11)]]; constant bool B_trans [[function_constant(11)]];
// Define the memory layout of the matrix block.
constant ushort M_group [[function_constant(200)]];
constant ushort N_group [[function_constant(201)]];
constant ushort K_group [[function_constant(202)]];
constant bool prefer_async_copy [[function_constant(206)]]; constant bool prefer_async_copy [[function_constant(206)]];
constant bool ideal_grouping [[function_constant(207)]]; constant bool ideal_grouping [[function_constant(207)]];
constant bool batched [[function_constant(100)]];
constant ushort A_leading_dim = A_trans ? M : K; constant ushort A_leading_dim = A_trans ? M : K;
constant ushort B_leading_dim = B_trans ? K : N; constant ushort B_leading_dim = B_trans ? K : N;
constant ushort A_leading_block_dim = A_trans ? M_group : K_group;
constant ushort B_leading_block_dim = B_trans ? K_group : N_group;
// Thresholds that mark the matrix edge.
constant uint M_edge = M - (M % M_group);
constant uint N_edge = N - (N % N_group);
// The layout of threads within a SIMD matrix. // The layout of threads within a SIMD matrix.
// //
@ -123,28 +114,28 @@ METAL_FUNC void multiply_accumulate(
thread simdgroup_matrix_storage<U> *C_sram, thread simdgroup_matrix_storage<U> *C_sram,
ushort k ushort k
) { ) {
#pragma clang loop unroll(full) #pragma clang loop unroll(full)
for (ushort m = 0; m < M_register; m += 8) { for (ushort m = 0; m < M_register; m += 8) {
ushort2 origin(0, m); ushort2 origin(0, m);
auto A = get_sram(A_sram, 8, origin); auto A = get_sram(A_sram, 8, origin);
A->load(A_src, A_leading_dim, ushort2(k, m), A_trans); A->load(A_src, A_leading_dim, ushort2(k, m), A_trans);
} }
#pragma clang loop unroll(full) #pragma clang loop unroll(full)
for (ushort n = 0; n < N_register; n += 8) { for (ushort n = 0; n < N_register; n += 8) {
ushort2 origin(n, 0); ushort2 origin(n, 0);
auto B = get_sram(B_sram, N_register, origin); auto B = get_sram(B_sram, N_register, origin);
B->load(B_src, B_leading_dim, ushort2(n, k), B_trans); B->load(B_src, B_leading_dim, ushort2(n, k), B_trans);
} }
#pragma clang loop unroll(full) #pragma clang loop unroll(full)
for (ushort m = 0; m < M_register; m += 8) { for (ushort m = 0; m < M_register; m += 8) {
#pragma clang loop unroll(full) #pragma clang loop unroll(full)
for (ushort n = 0; n < N_register; n += 8) { for (ushort n = 0; n < N_register; n += 8) {
auto A = get_sram(A_sram, 8, ushort2(0, m)); auto A = get_sram(A_sram, 8, ushort2(0, m));
auto B = get_sram(B_sram, N_register, ushort2(n, 0)); auto B = get_sram(B_sram, N_register, ushort2(n, 0));
auto C = get_sram(C_sram, N_register, ushort2(n, m)); auto C = get_sram(C_sram, N_register, ushort2(n, m));
C->multiply(*A, *B); C->multiply(*A, *B);
}
} }
}
} }
// One multiply-accumulate loop iteration, or 8 dot products. // One multiply-accumulate loop iteration, or 8 dot products.
@ -162,28 +153,28 @@ METAL_FUNC void multiply_accumulate(
thread simdgroup_matrix_storage<U> *C_sram, thread simdgroup_matrix_storage<U> *C_sram,
ushort k ushort k
) { ) {
#pragma clang loop unroll(full) #pragma clang loop unroll(full)
for (ushort m = 0; m < M_register; m += 8) { for (ushort m = 0; m < M_register; m += 8) {
ushort2 origin(0, m); ushort2 origin(0, m);
auto A = get_sram(A_sram, 8, origin); auto A = get_sram(A_sram, 8, origin);
A->load(A_src, A_leading_dim, ushort2(k, m), A_trans); A->load(A_src, A_leading_dim, ushort2(k, m), A_trans);
} }
#pragma clang loop unroll(full) #pragma clang loop unroll(full)
for (ushort n = 0; n < N_register; n += 8) { for (ushort n = 0; n < N_register; n += 8) {
ushort2 origin(n, 0); ushort2 origin(n, 0);
auto B = get_sram(B_sram, N_register, origin); auto B = get_sram(B_sram, N_register, origin);
B->load(B_src, B_leading_dim, ushort2(n, k), B_trans); B->load(B_src, B_leading_dim, ushort2(n, k), B_trans);
} }
#pragma clang loop unroll(full) #pragma clang loop unroll(full)
for (ushort m = 0; m < M_register; m += 8) { for (ushort m = 0; m < M_register; m += 8) {
#pragma clang loop unroll(full) #pragma clang loop unroll(full)
for (ushort n = 0; n < N_register; n += 8) { for (ushort n = 0; n < N_register; n += 8) {
auto A = get_sram(A_sram, 8, ushort2(0, m)); auto A = get_sram(A_sram, 8, ushort2(0, m));
auto B = get_sram(B_sram, N_register, ushort2(n, 0)); auto B = get_sram(B_sram, N_register, ushort2(n, 0));
auto C = get_sram(C_sram, N_register, ushort2(n, m)); auto C = get_sram(C_sram, N_register, ushort2(n, m));
C->multiply(*A, *B); C->multiply(*A, *B);
}
} }
}
} }
// Metal function arguments. // Metal function arguments.
@ -191,19 +182,19 @@ METAL_FUNC void multiply_accumulate(
// A: the left-hand side matrix // A: the left-hand side matrix
// - dimensions: M x K // - dimensions: M x K
// K x M (transposed) // K x M (transposed)
// - memory precision: memA // - memory precision: T
// - register precision: regA // - register precision: T
// //
// B: the right-hand side matrix // B: the right-hand side matrix
// - dimensions: K x N // - dimensions: K x N
// N x K (transposed) // N x K (transposed)
// - memory precision: memB // - memory precision: U
// - register precision: regB // - register precision: U
// //
// C: the output matrix, alternatively the dot product accumulator // C: the output matrix, alternatively the dot product accumulator
// - dimensions: M x N // - dimensions: M x N
// - memory precision: memC // - memory precision: V
// - register precision: regC // - register precision: V
// //
// threadgroup_block: the chunk of threadgroup memory allocated at runtime // threadgroup_block: the chunk of threadgroup memory allocated at runtime
// - ideally 10 KB or less // - ideally 10 KB or less
@ -211,28 +202,35 @@ METAL_FUNC void multiply_accumulate(
template < template <
typename T, typename T,
typename U = T, typename U = T,
ushort M_block_dim, typename V = U,
ushort N_block_dim, ushort M_group,
ushort K_block_dim, ushort N_group,
ushort M_split, ushort K_group,
ushort N_split ushort M_splits,
ushort N_splits,
ushort M_register = M_group / M_splits,
ushort N_register = N_group / N_splits
> >
void gemm_impl( void gemm_impl(
device T *A [[buffer(0)]], device T *A [[buffer(0)]],
device U *B [[buffer(1)]], device U *B [[buffer(1)]],
device U *C [[buffer(2)]], device V *C [[buffer(2)]],
threadgroup uchar *threadgroup_block [[threadgroup(0)]], threadgroup uchar *threadgroup_block [[threadgroup(0)]],
constant ulong4 *matrix_offsets [[buffer(10), function_constant(batched)]],
uint3 gid [[threadgroup_position_in_grid]], uint3 gid [[threadgroup_position_in_grid]],
ushort sidx [[simdgroup_index_in_threadgroup]], ushort sidx [[simdgroup_index_in_threadgroup]],
ushort lane_id [[thread_index_in_simdgroup]] ushort lane_id [[thread_index_in_simdgroup]]
) { ) {
constexpr ushort M_register = M_block_dim / M_split; const ushort A_leading_block_dim = A_trans ? M_group : K_group;
constexpr ushort N_register = N_block_dim / N_split; const ushort B_leading_block_dim = B_trans ? K_group : N_group;
constexpr ushort threadgroup_size = 32 * M_split * N_split;
const ushort iteration_start = prefer_async_copy ? 0 : (K - (K % K_group)); // Thresholds that mark the matrix edge.
const uint M_edge = M - (M % M_group);
const uint N_edge = N - (N % N_group);
const ushort async_iter_start = prefer_async_copy ? 0 : (K - (K % K_group));
// Find the number of elements in the final block. If the matrix // Find the number of elements in the final block. If the matrix
// dimensions are perfectly divisibly by block dimensions, we don't want // dimensions are perfectly divisibly by block dimensions, we don't want
@ -249,9 +247,16 @@ void gemm_impl(
const ushort M_shift = (M < M_group) ? 0 : M_register - M_remainder; const ushort M_shift = (M < M_group) ? 0 : M_register - M_remainder;
const ushort N_shift = (N < N_group) ? 0 : N_register - N_remainder; const ushort N_shift = (N < N_group) ? 0 : N_register - N_remainder;
if (batched) {
ulong3 offsets = matrix_offsets[0].xyz * gid.z;
A = (device T*)((device uchar*)A + offsets[0]);
B = (device U*)((device uchar*)B + offsets[1]);
C = (device V*)((device uchar*)C + offsets[2]);
}
auto A_block = (threadgroup T*)(threadgroup_block); auto A_block = (threadgroup T*)(threadgroup_block);
auto B_block = (threadgroup U*)(threadgroup_block + (M*K)); auto B_block = (threadgroup U*)(threadgroup_block + (M * K));
ushort2 sid(sidx % N_split, sidx / N_split); ushort2 sid(sidx % N_splits, sidx / N_splits);
ushort2 morton_offset = morton_order(lane_id); ushort2 morton_offset = morton_order(lane_id);
// Return early if the SIMD is out of bounds. // Return early if the SIMD is out of bounds.
@ -266,8 +271,8 @@ void gemm_impl(
N_offset + sid.x * N_register >= N) { N_offset + sid.x * N_register >= N) {
return; return;
} }
ushort2 offset_in_group(sid.x * M_register + morton_offset.x, ushort2 offset_in_group(sid.x * N_register + morton_offset.x,
sid.y * N_register + morton_offset.y); sid.y * M_register + morton_offset.y);
// Shift the matrix block within bounds, if possible. // Shift the matrix block within bounds, if possible.
if ((M_shift != 0) && (gid.y * M_group >= M_edge)) { if ((M_shift != 0) && (gid.y * M_group >= M_edge)) {
@ -277,91 +282,98 @@ void gemm_impl(
N_offset -= N_shift; N_offset -= N_shift;
} }
simdgroup_matrix_storage<U> C_sram[(M_register / 8) * (N_register / 8)]; simdgroup_matrix_storage<V> C_sram[(M_register / 8) * (N_register / 8)];
// Initialize the accumulator. // Initialize the accumulator.
#pragma clang loop unroll(full) #pragma clang loop unroll(full)
for (ushort m = 0; m < M_register; m += 8) { for (ushort m = 0; m < M_register; m += 8) {
#pragma clang loop unroll(full) #pragma clang loop unroll(full)
for (ushort n = 0; n < N_register; n += 8) { for (ushort n = 0; n < N_register; n += 8) {
ushort2 origin(n, m); ushort2 origin(m, n);
auto C = get_sram(C_sram, N_register, origin); auto C = get_sram(C_sram, N_register, origin);
*C = simdgroup_matrix_storage<U>(0); *C = simdgroup_matrix_storage<V>(0);
} }
} }
// Perform the iterations where async copy is avoided. // Perform the iterations where async copy is avoided.
for (uint k = 0; k < iteration_start; k += 8) { #pragma clang loop unroll(full)
for (uint k = 0; k < async_iter_start; k += 8) {
uint2 A_offset(k, M_offset); uint2 A_offset(k, M_offset);
uint2 B_offset(N_offset, k); uint2 B_offset(N_offset, k);
A_offset += uint2(morton_offset.x, offset_in_group.y); A_offset += uint2(morton_offset.x, offset_in_group.y);
B_offset += uint2(offset_in_group.x, morton_offset.y); B_offset += uint2(offset_in_group.x, morton_offset.y);
auto A_src = simdgroup_matrix_storage<T>::apply_offset( auto A_src = simdgroup_matrix_storage<T>::apply_offset(A, A_leading_dim, A_offset, A_trans);
A, A_leading_dim, A_offset, A_trans); auto B_src = simdgroup_matrix_storage<U>::apply_offset(B, B_leading_dim, B_offset, B_trans);
auto B_src = simdgroup_matrix_storage<U>::apply_offset(
B, N, B_offset, B_trans);
simdgroup_matrix_storage<T> A_sram[M_register / 8]; simdgroup_matrix_storage<T> A_sram[M_register / 8];
simdgroup_matrix_storage<U> B_sram[N_register / 8]; simdgroup_matrix_storage<U> B_sram[N_register / 8];
multiply_accumulate<T, U, M_register, N_register>( multiply_accumulate<T, U, M_register, N_register>(A_src, B_src, A_sram, B_sram, C_sram, 0);
A_src, B_src, A_sram, B_sram, C_sram, 0);
} }
if (!prefer_async_copy) {
// Perform the iterations where async copy is used. #pragma clang loop unroll(full)
for (uint k = iteration_start; k < K; k += K_group) { for (uint k = 0; k < K; k += K_group) {
// Launch an async copy from device to threadgroup memory.
if (sidx == 0) {
uint2 A_offset(k, M_offset); uint2 A_offset(k, M_offset);
uint2 B_offset(N_offset, k); uint2 B_offset(N_offset, k);
auto A_src = simdgroup_matrix_storage<T>::apply_offset( A_offset += uint2(morton_offset.x, offset_in_group.y);
A, A_leading_dim, A_offset, A_trans); B_offset += uint2(offset_in_group.x, morton_offset.y);
auto B_src = simdgroup_matrix_storage<U>::apply_offset(
B, N, B_offset, B_trans);
ushort M_tile_dimension = min(uint(M_group), M - M_offset); auto A_src = simdgroup_matrix_storage<T>::apply_offset(A, A_leading_dim, A_offset, A_trans);
ushort N_tile_dimension = min(uint(N_group), N - N_offset); auto B_src = simdgroup_matrix_storage<U>::apply_offset(B, B_leading_dim, B_offset, B_trans);
ushort K_tile_dimension = min(uint(K_group), K - k);
ushort K_tile_padded = min(uint(K_group), (K + K_remainder_padded - K_remainder) - k);
ushort2 A_tile_src(K_tile_dimension, M_tile_dimension); simdgroup_matrix_storage<T> A_sram[M_register / 8];
ushort2 B_tile_src(N_tile_dimension, K_tile_dimension); simdgroup_matrix_storage<U> B_sram[N_register / 8];
ushort2 A_tile_dst(K_tile_padded, M_tile_dimension); multiply_accumulate<T, U, M_register, N_register>(A_src, B_src, A_sram, B_sram, C_sram, 0);
ushort2 B_tile_dst(N_tile_dimension, K_tile_padded);
simdgroup_event events[2];
events[0].async_copy(A_block, A_leading_block_dim, A_tile_dst,
A_src, A_leading_dim, A_tile_src, A_trans);
events[1].async_copy(B_block, B_leading_block_dim, B_tile_dst,
B_src, B_leading_dim, B_tile_src, B_trans);
simdgroup_event::wait(2, events);
} }
threadgroup_barrier(mem_flags::mem_threadgroup); } else {
// Perform the iterations where async copy is used.
ushort2 A_block_offset(morton_offset.x, offset_in_group.y);
ushort2 B_block_offset(offset_in_group.x, morton_offset.y);
auto A_block_src = simdgroup_matrix_storage<T>::apply_offset(
A_block, A_leading_block_dim, A_block_offset, A_trans);
auto B_block_src = simdgroup_matrix_storage<U>::apply_offset(
B_block, B_leading_block_dim, B_block_offset, B_trans);
simdgroup_matrix_storage<T> A_sram[(M_register / 8) * (K_block_dim / 8)];
simdgroup_matrix_storage<U> B_sram[(K_block_dim / 8) * (N_register / 8)];
#pragma clang loop unroll(full) #pragma clang loop unroll(full)
for (ushort k = 0; k < K_remainder_padded; k += 8) { for (uint k = async_iter_start; k < K; k += K_group) {
multiply_accumulate<T, U, M_register, N_register>( // Launch an async copy from device to threadgroup memory.
A_block_src, B_block_src, A_sram, B_sram, C_sram, k); if (sidx == 0) {
} uint2 A_offset(k, M_offset);
uint2 B_offset(N_offset, k);
auto A_src = simdgroup_matrix_storage<T>::apply_offset(A, A_leading_dim, A_offset, A_trans);
auto B_src = simdgroup_matrix_storage<U>::apply_offset(B, B_leading_dim, B_offset, B_trans);
// Will there be any iterations after this one? ushort M_tile_dimension = min(uint(M_group), M - M_offset);
if (k + K_group < K) { ushort N_tile_dimension = min(uint(N_group), N - N_offset);
// If so, we haven't reached the edge of either input matrix yet. ushort K_tile_dimension = min(uint(K_group), K - k);
#pragma clang loop unroll(full) ushort K_tile_padded = min(uint(K_group), (K + K_remainder_padded - K_remainder) - k);
for (ushort k = K_remainder_padded; k < K_group; k += 8) {
multiply_accumulate<T, U, M_register, N_register>( ushort2 A_tile_src(K_tile_dimension, M_tile_dimension);
A_block_src, B_block_src, A_sram, B_sram, C_sram, k); ushort2 B_tile_src(N_tile_dimension, K_tile_dimension);
ushort2 A_tile_dst(K_tile_padded, M_tile_dimension);
ushort2 B_tile_dst(N_tile_dimension, K_tile_padded);
simdgroup_event events[2];
events[0].async_copy(A_block, A_leading_block_dim, A_tile_dst, A_src, A_leading_dim, A_tile_src, A_trans);
events[1].async_copy(B_block, B_leading_block_dim, B_tile_dst, B_src, B_leading_dim, B_tile_src, B_trans);
simdgroup_event::wait(2, events);
} }
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
ushort2 A_block_offset(morton_offset.x, offset_in_group.y);
ushort2 B_block_offset(offset_in_group.x, morton_offset.y);
auto A_block_src = simdgroup_matrix_storage<T>::apply_offset(A_block, A_leading_block_dim, A_block_offset, A_trans);
auto B_block_src = simdgroup_matrix_storage<U>::apply_offset(B_block, B_leading_block_dim, B_block_offset, B_trans);
simdgroup_matrix_storage<T> A_sram[(M_register / 8) * (K_group / 8)];
simdgroup_matrix_storage<U> B_sram[(K_group / 8) * (N_register / 8)];
#pragma clang loop unroll(full)
for (ushort k = 0; k < K_remainder_padded; k += 8) {
multiply_accumulate<T, U, M_register, N_register>(A_block_src, B_block_src, A_sram, B_sram, C_sram, k);
}
// Will there be any iterations after this one?
if (k + K_group < K) {
// If so, we haven't reached the edge of either input matrix yet.
#pragma clang loop unroll(full)
for (ushort k = K_remainder_padded; k < K_group; k += 8) {
multiply_accumulate<T, U, M_register, N_register>(A_block_src, B_block_src, A_sram, B_sram, C_sram, k);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
} }
} }
@ -384,9 +396,8 @@ void gemm_impl(
} }
} else { } else {
// Slow path for when memory must be handled more carefully. // Slow path for when memory must be handled more carefully.
auto C_block = (threadgroup U*)(threadgroup_block); auto C_block = (threadgroup V*)(threadgroup_block);
auto C_block_dst = simdgroup_matrix_storage<U>::apply_offset( auto C_block_dst = simdgroup_matrix_storage<V>::apply_offset(C_block, N_group, offset_in_group);
C_block, N_group, offset_in_group);
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
// Write the accumulator to threadgroup memory. // Write the accumulator to threadgroup memory.
@ -405,9 +416,8 @@ void gemm_impl(
if (sidx == 0) { if (sidx == 0) {
uint2 C_offset(gid.x * N_group, gid.y * M_group); uint2 C_offset(gid.x * N_group, gid.y * M_group);
ushort2 C_tile(min(uint(N_group), N - C_offset.x), ushort2 C_tile(min(uint(N_group), N - C_offset.x),
min(uint(M_group), M - C_offset.y)); min(uint(M_group), M - C_offset.y));
auto C_dst = simdgroup_matrix_storage<U>::apply_offset( auto C_dst = simdgroup_matrix_storage<V>::apply_offset(C, N, C_offset);
C, N, C_offset);
// If we shift successfully, the garbage zone moves from the bottom right // If we shift successfully, the garbage zone moves from the bottom right
// to the top left. // to the top left.
@ -419,8 +429,7 @@ void gemm_impl(
if ((N_shift != 0) && (C_offset.x >= N_edge)) { if ((N_shift != 0) && (C_offset.x >= N_edge)) {
C_block_shift.x = N_shift; C_block_shift.x = N_shift;
} }
C_block = simdgroup_matrix_storage<U>::apply_offset( C_block = simdgroup_matrix_storage<V>::apply_offset(C_block, N_group, C_block_shift);
C_block, N_group, C_block_shift);
} }
simdgroup_event event; simdgroup_event event;
@ -435,34 +444,19 @@ kernel void hgemm(
device half *C [[buffer(2)]], device half *C [[buffer(2)]],
threadgroup uchar *threadgroup_block [[threadgroup(0)]], threadgroup uchar *threadgroup_block [[threadgroup(0)]],
constant ulong4 *matrix_offsets [[buffer(10), function_constant(batched)]],
uint3 gid [[threadgroup_position_in_grid]], uint3 gid [[threadgroup_position_in_grid]],
ushort sidx [[simdgroup_index_in_threadgroup]], ushort sidx [[simdgroup_index_in_threadgroup]],
ushort lane_id [[thread_index_in_simdgroup]] ushort lane_id [[thread_index_in_simdgroup]]
) { ) {
if (ideal_grouping) { if (ideal_grouping) {
gemm_impl< gemm_impl<half, half, half, 32, 32, 32, 1, 1>(
half, A, B, C, threadgroup_block, matrix_offsets, gid, sidx, lane_id
half,
32,
32,
32,
1,
1
>(
A, B, C, threadgroup_block, gid, sidx, lane_id
); );
} else { } else {
gemm_impl< gemm_impl<half, half, half, 48, 48, 32, 1, 1>(
half, A, B, C, threadgroup_block, matrix_offsets, gid, sidx, lane_id
half,
48,
48,
32,
1,
1
>(
A, B, C, threadgroup_block, gid, sidx, lane_id
); );
} }
} }
@ -473,40 +467,17 @@ kernel void sgemm(
device float *C [[buffer(2)]], device float *C [[buffer(2)]],
threadgroup uchar *threadgroup_block [[threadgroup(0)]], threadgroup uchar *threadgroup_block [[threadgroup(0)]],
constant ulong4 *matrix_offsets [[buffer(10), function_constant(batched)]],
uint3 gid [[threadgroup_position_in_grid]], uint3 gid [[threadgroup_position_in_grid]],
ushort sidx [[simdgroup_index_in_threadgroup]], ushort sidx [[simdgroup_index_in_threadgroup]],
ushort lane_id [[thread_index_in_simdgroup]] ushort lane_id [[thread_index_in_simdgroup]]
) { ) {
gemm_impl<float, float, float, 32, 32, 32, 2, 2>(
A, B, C, threadgroup_block, matrix_offsets, gid, sidx, lane_id
);
/*
if (prefer_async_copy) { if (prefer_async_copy) {
// TODO: figure out correct splits
if (ideal_grouping) {
gemm_impl<
float,
float,
32,
32,
32,
2,
2
>(
A, B, C, threadgroup_block, gid, sidx, lane_id
);
} else {
gemm_impl<
float,
float,
48,
48,
24,
2,
2
>(
A, B, C, threadgroup_block, gid, sidx, lane_id
);
}
} else {
// TODO: figure out correct splits
constexpr ushort M_split = 1; constexpr ushort M_split = 1;
constexpr ushort N_split = 1; constexpr ushort N_split = 1;
if (ideal_grouping) { if (ideal_grouping) {
@ -534,5 +505,34 @@ kernel void sgemm(
A, B, C, threadgroup_block, gid, sidx, lane_id A, B, C, threadgroup_block, gid, sidx, lane_id
); );
} }
} else {
constexpr ushort M_split = 2;
constexpr ushort N_split = 2;
if (ideal_grouping) {
gemm_impl<
float,
float,
32,
32,
8,
M_split,
N_split
>(
A, B, C, threadgroup_block, gid, sidx, lane_id
);
} else {
gemm_impl<
float,
float,
32,
32,
100,
M_split,
N_split
>(
A, B, C, threadgroup_block, gid, sidx, lane_id
);
}
} }
*/
} }

View File

@ -1476,19 +1476,27 @@ pub fn call_gemm(
) -> Result<(), MetalKernelError> { ) -> Result<(), MetalKernelError> {
let prefer_async_copy = !device.supports_family(MTLGPUFamily::Apple9); let prefer_async_copy = !device.supports_family(MTLGPUFamily::Apple9);
let mut ideal_grouping = false;
let mut actual_groups: usize = 1; let mut actual_groups: usize = 1;
actual_groups *= divide(m, 48) as usize; actual_groups *= divide(m, 48) as usize;
actual_groups *= divide(n, 48) as usize; actual_groups *= divide(n, 48) as usize;
actual_groups *= b; actual_groups *= b;
let core_count = get_device_core_count(device); let core_count = get_device_core_count(device);
println!("Core count: {}", core_count);
let ideal_grouping = if name == "sgemm" { let ideal_grouping = if name == "sgemm" {
actual_groups <= core_count * 6 actual_groups <= core_count * 6
} else { } else {
actual_groups <= core_count * 9 actual_groups <= core_count * 9
}; };
let mut blockdim = (32, 32, 32);
if !ideal_grouping {
if name == "sgemm" {
blockdim = (48, 48, 24);
} else {
blockdim = (48, 48, 32);
}
}
assert!(rhs_stride.len() >= 2); assert!(rhs_stride.len() >= 2);
assert!(lhs_stride.len() >= 2); assert!(lhs_stride.len() >= 2);
let rhs_m1 = rhs_stride[rhs_stride.len() - 1]; let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
@ -1525,52 +1533,45 @@ pub fn call_gemm(
let alpha = 1.0f32; let alpha = 1.0f32;
let beta = 0.0f32; let beta = 0.0f32;
let batched = b > 1; let batched = b > 1;
println!("batched: {batched}");
let fused_activation = false; let fused_activation = false;
let fused_bias = false; let fused_bias = false;
let (m_simd, n_simd, k_simd, m_splits, n_splits) = if m == 1 {
let m_simd = 8;
let n_simd = 8;
let k_simd = 64;
let m_splits = 1;
let n_splits = 1;
(m_simd, n_simd, k_simd, m_splits, n_splits)
} else {
let m_simd = 40;
let n_simd = 40;
let k_simd = 32;
let m_splits = 1;
let n_splits = 1;
(m_simd, n_simd, k_simd, m_splits, n_splits)
};
let constants = Some(ConstantValues::new(vec![ let constants = Some(ConstantValues::new(vec![
(0, Value::USize(m)), (0, Value::USize(m)),
(1, Value::USize(n)), (1, Value::USize(n)),
(2, Value::USize(k)), (2, Value::USize(k)),
(10, Value::Bool(a_trans)), (10, Value::Bool(a_trans)),
(11, Value::Bool(b_trans)), (11, Value::Bool(b_trans)),
(13, Value::Bool(d_trans)), //(13, Value::Bool(d_trans)),
(20, Value::F32(alpha)), //(20, Value::F32(alpha)),
(21, Value::F32(beta)), //(21, Value::F32(beta)),
(100, Value::Bool(batched)), (100, Value::Bool(batched)),
(101, Value::Bool(fused_activation)), //(101, Value::Bool(fused_activation)),
// Garbage // Garbage
(102, Value::Bool(false)), (102, Value::Bool(false)),
(103, Value::Bool(false)), (103, Value::Bool(false)),
(113, Value::Bool(false)), (113, Value::Bool(false)),
(50_000, Value::Bool(false)), (50_000, Value::Bool(false)),
// End garbage // End garbage
(200, Value::U16(32)), //(200, Value::U16(blockdim.0)),
(201, Value::U16(32)), //(201, Value::U16(blockdim.1)),
(202, Value::U16(32)), //(202, Value::U16(blockdim.2)),
(206, Value::Bool(prefer_async_copy)), (206, Value::Bool(prefer_async_copy)),
(207, Value::Bool(ideal_grouping)), (207, Value::Bool(ideal_grouping)),
(210, Value::U16(m_splits)), //(210, Value::U16(m_splits)),
(211, Value::U16(n_splits)), //(211, Value::U16(n_splits)),
(50_001, Value::Bool(fused_bias)), //(50_001, Value::Bool(fused_bias)),
])); ]));
let pipeline = kernels.load_pipeline_with_constants(device, Source::Candle, name, constants)?; let pipeline = kernels.load_pipeline_with_constants(device, Source::Candle, name, constants)?;
let m_group = m_simd * m_splits;
let n_group = n_simd * n_splits; let m_group: u16 = 32;
let n_group: u16 = 32;
let m_splits: u16 = 2;
let n_splits: u16 = 2;
let k_simd: u16 = 32;
let m_simd = m_group / m_splits;
let n_simd = n_group / n_splits;
let a_block_length = m_group * k_simd; let a_block_length = m_group * k_simd;
let b_block_length = k_simd * n_group; let b_block_length = k_simd * n_group;
@ -1580,6 +1581,7 @@ pub fn call_gemm(
let c_block_length = m_group * n_group; let c_block_length = m_group * n_group;
block_elements = std::cmp::max(c_block_length, block_elements) block_elements = std::cmp::max(c_block_length, block_elements)
} }
/*
if fused_bias { if fused_bias {
if d_trans { if d_trans {
block_elements = std::cmp::max(block_elements, m_group); block_elements = std::cmp::max(block_elements, m_group);
@ -1587,6 +1589,7 @@ pub fn call_gemm(
block_elements = std::cmp::max(block_elements, n_group); block_elements = std::cmp::max(block_elements, n_group);
} }
} }
*/
let bytes = match name { let bytes = match name {
"sgemm" => 4, "sgemm" => 4,
"hgemm" => 2, "hgemm" => 2,
@ -1600,7 +1603,7 @@ pub fn call_gemm(
let encoder = command_buffer.new_compute_command_encoder(); let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline); encoder.set_compute_pipeline_state(&pipeline);
encoder.set_threadgroup_memory_length(0, block_bytes.into()); encoder.set_threadgroup_memory_length(0, block_bytes as NSUInteger);
encoder.set_buffer(0, Some(lhs_buffer), lhs_offset as NSUInteger); encoder.set_buffer(0, Some(lhs_buffer), lhs_offset as NSUInteger);
encoder.set_buffer(1, Some(rhs_buffer), rhs_offset as NSUInteger); encoder.set_buffer(1, Some(rhs_buffer), rhs_offset as NSUInteger);
encoder.set_buffer(2, Some(output), 0); encoder.set_buffer(2, Some(output), 0);
@ -1614,7 +1617,7 @@ pub fn call_gemm(
// TODO byte_stride_d // TODO byte_stride_d
let byte_stride_d = 0; let byte_stride_d = 0;
let buffer: Vec<u64> = vec![ let buffer: [u64; 4] = [
byte_stride_a as _, byte_stride_a as _,
byte_stride_b as _, byte_stride_b as _,
byte_stride_c as _, byte_stride_c as _,

View File

@ -1100,6 +1100,11 @@ fn gemm() {
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect(); let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
let rhs_stride = vec![n * k, n, 1]; let rhs_stride = vec![n * k, n, 1];
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect(); let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
println!("lhs: {lhs:?}");
println!("lhs_stride: {lhs_stride:?}");
println!("rhs: {rhs:?}");
println!("rhs_stride: {rhs_stride:?}");
let results = run_gemm((b, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 0); let results = run_gemm((b, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 0);
assert_eq!( assert_eq!(
approx(results, 4), approx(results, 4),
@ -1111,6 +1116,11 @@ fn gemm() {
let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect(); let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect();
let rhs_stride = vec![n * k, n, 1]; let rhs_stride = vec![n * k, n, 1];
let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect(); let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect();
println!("lhs: {lhs:?}");
println!("lhs_stride: {lhs_stride:?}");
println!("rhs: {rhs:?}");
println!("rhs_stride: {rhs_stride:?}");
let results = run_gemm((b, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 0); let results = run_gemm((b, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 0);
assert_eq!( assert_eq!(
approx(results, 4), approx(results, 4),