mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 11:56:45 +00:00
Added XLMRobertaModel for Reranking (#2686)
* add xlm-roberta-base * Add task enum for fill-mask and reranker in xlm-roberta example; update README and fix attention mask dimensions - Introduced a new `Task` enum to replace string task identifiers in the xlm-roberta example. - Updated the logic in `main.rs` to handle tasks using the new enum. - Enhanced README with example output for fill-mask task. - Fixed dimension retrieval in `prepare_4d_attention_mask` function for better clarity and safety. * Clippy fix. --------- Co-authored-by: laurent <laurent.mazare@gmail.com>
This commit is contained in:
@ -109,4 +109,5 @@ pub mod vit;
|
||||
pub mod whisper;
|
||||
pub mod with_tracing;
|
||||
pub mod wuerstchen;
|
||||
pub mod xlm_roberta;
|
||||
pub mod yi;
|
||||
|
545
candle-transformers/src/models/xlm_roberta.rs
Normal file
545
candle-transformers/src/models/xlm_roberta.rs
Normal file
@ -0,0 +1,545 @@
|
||||
use crate::models::with_tracing::{linear, Linear};
|
||||
use candle::{DType, Module, Result, Tensor};
|
||||
use candle_nn::{
|
||||
embedding, layer_norm, ops::softmax_last_dim, Activation, Embedding, LayerNorm, VarBuilder,
|
||||
};
|
||||
|
||||
#[derive(Debug, Clone, serde::Deserialize)]
|
||||
pub struct Config {
|
||||
pub hidden_size: usize,
|
||||
pub layer_norm_eps: f64,
|
||||
pub attention_probs_dropout_prob: f32,
|
||||
pub hidden_dropout_prob: f32,
|
||||
pub num_attention_heads: usize,
|
||||
pub position_embedding_type: String,
|
||||
pub intermediate_size: usize,
|
||||
pub hidden_act: Activation,
|
||||
pub num_hidden_layers: usize,
|
||||
pub vocab_size: usize,
|
||||
pub max_position_embeddings: usize,
|
||||
pub type_vocab_size: usize,
|
||||
pub pad_token_id: u32,
|
||||
}
|
||||
|
||||
struct XLMRobertaEmbeddings {
|
||||
word_embeddings: Embedding,
|
||||
position_embeddings: Option<Embedding>,
|
||||
token_type_embeddings: Embedding,
|
||||
layer_norm: LayerNorm,
|
||||
padding_idx: u32,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl XLMRobertaEmbeddings {
|
||||
fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
|
||||
let word_embeddings = embedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
vb.pp("word_embeddings"),
|
||||
)?;
|
||||
let position_embeddings = embedding(
|
||||
config.max_position_embeddings,
|
||||
config.hidden_size,
|
||||
vb.pp("position_embeddings"),
|
||||
)?;
|
||||
let token_type_embeddings = embedding(
|
||||
config.type_vocab_size,
|
||||
config.hidden_size,
|
||||
vb.pp("token_type_embeddings"),
|
||||
)?;
|
||||
let layer_norm = layer_norm(
|
||||
config.hidden_size,
|
||||
config.layer_norm_eps,
|
||||
vb.pp("LayerNorm"),
|
||||
)?;
|
||||
Ok(Self {
|
||||
word_embeddings,
|
||||
position_embeddings: Some(position_embeddings),
|
||||
token_type_embeddings,
|
||||
layer_norm,
|
||||
padding_idx: config.pad_token_id,
|
||||
span: tracing::span!(tracing::Level::TRACE, "embeddings"),
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let (_bsize, _) = input_ids.dims2()?;
|
||||
let input_embeddings = self.word_embeddings.forward(input_ids)?;
|
||||
let token_type_embeddings = self.token_type_embeddings.forward(token_type_ids)?;
|
||||
let mut embeddings = (&input_embeddings + token_type_embeddings)?;
|
||||
if let Some(position_embeddings) = &self.position_embeddings {
|
||||
let mask = input_ids
|
||||
.ne(self.padding_idx)?
|
||||
.to_dtype(input_embeddings.dtype())?;
|
||||
let cumsum = mask.cumsum(1)?;
|
||||
let position_ids = (cumsum * mask)?
|
||||
.broadcast_add(
|
||||
&Tensor::try_from(self.padding_idx)?
|
||||
.to_dtype(input_embeddings.dtype())?
|
||||
.to_device(input_embeddings.device())?,
|
||||
)?
|
||||
.to_dtype(candle::DType::U32)?;
|
||||
embeddings = embeddings.broadcast_add(&position_embeddings.forward(&position_ids)?)?;
|
||||
}
|
||||
let embeddings = self.layer_norm.forward(&embeddings)?;
|
||||
Ok(embeddings)
|
||||
}
|
||||
}
|
||||
|
||||
struct XLMRobertaSelfAttention {
|
||||
num_attention_heads: usize,
|
||||
attention_head_size: usize,
|
||||
all_head_size: usize,
|
||||
query: Linear,
|
||||
key: Linear,
|
||||
value: Linear,
|
||||
}
|
||||
|
||||
impl XLMRobertaSelfAttention {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let attention_head_size = cfg.hidden_size / cfg.num_attention_heads;
|
||||
let all_head_size = cfg.num_attention_heads * attention_head_size;
|
||||
Ok(Self {
|
||||
num_attention_heads: cfg.num_attention_heads,
|
||||
attention_head_size,
|
||||
all_head_size,
|
||||
query: linear(cfg.hidden_size, all_head_size, vb.pp("query"))?,
|
||||
key: linear(cfg.hidden_size, all_head_size, vb.pp("key"))?,
|
||||
value: linear(cfg.hidden_size, all_head_size, vb.pp("value"))?,
|
||||
})
|
||||
}
|
||||
|
||||
fn transpose_for_scores(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let mut new_x_shape = x.dims().to_vec();
|
||||
new_x_shape[2] = self.num_attention_heads;
|
||||
new_x_shape.push(self.attention_head_size);
|
||||
let x = x.reshape(new_x_shape)?;
|
||||
x.permute((0, 2, 1, 3))?.contiguous()
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&self,
|
||||
hidden_states: &Tensor,
|
||||
encoder_hidden_states: Option<&Tensor>,
|
||||
attention_mask: &Tensor,
|
||||
past_key_value: Option<(&Tensor, &Tensor)>,
|
||||
encoder_attention_mask: Option<&Tensor>,
|
||||
) -> Result<Tensor> {
|
||||
let mixed_query_layer = self.query.forward(hidden_states)?;
|
||||
let is_cross_attention = encoder_hidden_states.is_some();
|
||||
let (key_layer, value_layer, attention_mask) = if is_cross_attention
|
||||
&& past_key_value.is_some()
|
||||
{
|
||||
let key_layer = past_key_value.unwrap().0.clone();
|
||||
let value_layer = past_key_value.unwrap().1.clone();
|
||||
let attention_mask = encoder_attention_mask.unwrap().clone();
|
||||
(key_layer, value_layer, Some(attention_mask))
|
||||
} else if is_cross_attention {
|
||||
let key_layer =
|
||||
self.transpose_for_scores(&self.key.forward(encoder_hidden_states.unwrap())?)?;
|
||||
let value_layer =
|
||||
self.transpose_for_scores(&self.value.forward(encoder_hidden_states.unwrap())?)?;
|
||||
let attention_mask = encoder_attention_mask.unwrap();
|
||||
(key_layer, value_layer, Some(attention_mask.clone()))
|
||||
} else if past_key_value.is_some() {
|
||||
let mut key_layer = self.transpose_for_scores(&self.key.forward(hidden_states)?)?;
|
||||
let mut value_layer = self.transpose_for_scores(&self.value.forward(hidden_states)?)?;
|
||||
key_layer = Tensor::cat(
|
||||
&[
|
||||
past_key_value.clone().as_ref().unwrap().0.clone(),
|
||||
key_layer,
|
||||
],
|
||||
2,
|
||||
)?;
|
||||
value_layer = Tensor::cat(
|
||||
&[past_key_value.as_ref().unwrap().1.clone(), value_layer],
|
||||
2,
|
||||
)?;
|
||||
(key_layer, value_layer, Some(attention_mask.clone()))
|
||||
} else {
|
||||
let key_layer = self.transpose_for_scores(&self.key.forward(hidden_states)?)?;
|
||||
let value_layer = self.transpose_for_scores(&self.value.forward(hidden_states)?)?;
|
||||
(key_layer, value_layer, Some(attention_mask.clone()))
|
||||
};
|
||||
|
||||
let query_layer = self.transpose_for_scores(&mixed_query_layer)?;
|
||||
let mut attention_scores = query_layer.matmul(&key_layer.transpose(2, 3)?)?;
|
||||
let scale = 1f64 / f64::sqrt(self.attention_head_size as f64);
|
||||
|
||||
attention_scores = (attention_scores * scale)?;
|
||||
attention_scores = match attention_mask {
|
||||
None => attention_scores,
|
||||
Some(mask) => {
|
||||
attention_scores.broadcast_add(&mask.to_dtype(attention_scores.dtype())?)?
|
||||
}
|
||||
};
|
||||
let attention_probs = softmax_last_dim(&attention_scores)?;
|
||||
|
||||
let context_layer = attention_probs
|
||||
.matmul(&value_layer)?
|
||||
.permute((0, 2, 1, 3))?
|
||||
.contiguous()?;
|
||||
let mut new_context_layer_shape =
|
||||
context_layer.dims()[..context_layer.dims().len() - 2].to_vec();
|
||||
new_context_layer_shape.push(self.all_head_size);
|
||||
let context_layer = context_layer.reshape(new_context_layer_shape)?;
|
||||
|
||||
Ok(context_layer)
|
||||
}
|
||||
}
|
||||
|
||||
struct XLMRobertaSelfOutput {
|
||||
dense: Linear,
|
||||
layernorm: LayerNorm,
|
||||
}
|
||||
|
||||
impl XLMRobertaSelfOutput {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let dense = linear(cfg.hidden_size, cfg.hidden_size, vb.pp("dense"))?;
|
||||
let layernorm =
|
||||
candle_nn::layer_norm(cfg.hidden_size, cfg.layer_norm_eps, vb.pp("LayerNorm"))?;
|
||||
Ok(Self { dense, layernorm })
|
||||
}
|
||||
|
||||
fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
|
||||
let hidden_states = self.dense.forward(hidden_states)?;
|
||||
let hidden_states = self.layernorm.forward(&(hidden_states + input_tensor)?)?;
|
||||
Ok(hidden_states)
|
||||
}
|
||||
}
|
||||
|
||||
struct XLMRobertaAttention {
|
||||
output: XLMRobertaSelfOutput,
|
||||
self_attention: XLMRobertaSelfAttention,
|
||||
}
|
||||
|
||||
impl XLMRobertaAttention {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let output = XLMRobertaSelfOutput::new(cfg, vb.pp("output"))?;
|
||||
let self_attention = XLMRobertaSelfAttention::new(cfg, vb.pp("self"))?;
|
||||
Ok(Self {
|
||||
output,
|
||||
self_attention,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&self,
|
||||
hidden_states: &Tensor,
|
||||
attention_mask: &Tensor,
|
||||
encoder_hidden_states: Option<&Tensor>,
|
||||
encoder_attention_mask: Option<&Tensor>,
|
||||
past_key_value: Option<(&Tensor, &Tensor)>,
|
||||
) -> Result<(Tensor, Tensor)> {
|
||||
let self_outputs = self.self_attention.forward(
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
attention_mask,
|
||||
past_key_value,
|
||||
encoder_attention_mask,
|
||||
)?;
|
||||
let attention_output = self.output.forward(&self_outputs, hidden_states)?;
|
||||
Ok((attention_output, self_outputs))
|
||||
}
|
||||
}
|
||||
|
||||
struct XLMRobertaOutput {
|
||||
dense: Linear,
|
||||
layernorm: LayerNorm,
|
||||
}
|
||||
|
||||
impl XLMRobertaOutput {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let dense = linear(cfg.intermediate_size, cfg.hidden_size, vb.pp("dense"))?;
|
||||
let layernorm =
|
||||
candle_nn::layer_norm(cfg.hidden_size, cfg.layer_norm_eps, vb.pp("LayerNorm"))?;
|
||||
Ok(Self { dense, layernorm })
|
||||
}
|
||||
|
||||
fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
|
||||
let hidden_states = self.dense.forward(hidden_states)?;
|
||||
let hidden_states = self.layernorm.forward(&(hidden_states + input_tensor)?)?;
|
||||
Ok(hidden_states)
|
||||
}
|
||||
}
|
||||
|
||||
struct XLMRobertaIntermediate {
|
||||
dense: Linear,
|
||||
intermediate_act_fn: Activation,
|
||||
}
|
||||
|
||||
impl XLMRobertaIntermediate {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let dense = linear(cfg.hidden_size, cfg.intermediate_size, vb.pp("dense"))?;
|
||||
let intermediate_act_fn = cfg.hidden_act;
|
||||
Ok(Self {
|
||||
dense,
|
||||
intermediate_act_fn,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
|
||||
let hidden_states = self.dense.forward(hidden_states)?;
|
||||
let hidden_states = self.intermediate_act_fn.forward(&hidden_states)?;
|
||||
Ok(hidden_states)
|
||||
}
|
||||
}
|
||||
|
||||
struct XLMRobertaLayer {
|
||||
attention: XLMRobertaAttention,
|
||||
intermediate: XLMRobertaIntermediate,
|
||||
output: XLMRobertaOutput,
|
||||
}
|
||||
|
||||
impl XLMRobertaLayer {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let attention = XLMRobertaAttention::new(cfg, vb.pp("attention"))?;
|
||||
let intermediate = XLMRobertaIntermediate::new(cfg, vb.pp("intermediate"))?;
|
||||
let output = XLMRobertaOutput::new(cfg, vb.pp("output"))?;
|
||||
Ok(Self {
|
||||
attention,
|
||||
intermediate,
|
||||
output,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&self,
|
||||
hidden_states: &Tensor,
|
||||
attention_mask: &Tensor,
|
||||
encoder_hidden_states: Option<&Tensor>,
|
||||
encoder_attention_mask: Option<&Tensor>,
|
||||
past_key_value: Option<(&Tensor, &Tensor)>,
|
||||
) -> Result<(Tensor, Tensor)> {
|
||||
let self_attention_outputs = self.attention.forward(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
)?;
|
||||
let attention_output = self_attention_outputs.0;
|
||||
let outputs = self_attention_outputs.1;
|
||||
let intermediate_output = self.intermediate.forward(&attention_output)?;
|
||||
let layer_output = self
|
||||
.output
|
||||
.forward(&intermediate_output, &attention_output)?;
|
||||
Ok((layer_output, outputs))
|
||||
}
|
||||
}
|
||||
|
||||
struct XLMRobertaEncoder {
|
||||
layers: Vec<XLMRobertaLayer>,
|
||||
}
|
||||
|
||||
impl XLMRobertaEncoder {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let layers = (0..cfg.num_hidden_layers)
|
||||
.map(|i| XLMRobertaLayer::new(cfg, vb.pp(format!("layer.{}", i))))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
Ok(Self { layers })
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&self,
|
||||
hidden_states: &Tensor,
|
||||
attention_mask: &Tensor,
|
||||
encoder_hidden_states: Option<&Tensor>,
|
||||
encoder_attention_mask: Option<&Tensor>,
|
||||
past_key_value: Option<(&Tensor, &Tensor)>,
|
||||
) -> Result<Tensor> {
|
||||
let mut hidden_states = hidden_states.clone();
|
||||
for layer_module in self.layers.iter() {
|
||||
let layer_outputs = layer_module.forward(
|
||||
&hidden_states,
|
||||
attention_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
)?;
|
||||
hidden_states = layer_outputs.0;
|
||||
}
|
||||
Ok(hidden_states)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct XLMRobertaModel {
|
||||
encoder: XLMRobertaEncoder,
|
||||
embeddings: XLMRobertaEmbeddings,
|
||||
}
|
||||
|
||||
impl XLMRobertaModel {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let encoder = XLMRobertaEncoder::new(cfg, vb.pp("encoder"))?;
|
||||
let embeddings = XLMRobertaEmbeddings::load(vb.pp("embeddings"), cfg)?;
|
||||
Ok(Self {
|
||||
encoder,
|
||||
embeddings,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn forward(
|
||||
&self,
|
||||
input_ids: &Tensor,
|
||||
attention_mask: &Tensor,
|
||||
token_type_ids: &Tensor,
|
||||
past_key_value: Option<(&Tensor, &Tensor)>,
|
||||
encoder_hidden_states: Option<&Tensor>,
|
||||
encoder_attention_mask: Option<&Tensor>,
|
||||
) -> Result<Tensor> {
|
||||
let hidden_states = self.embeddings.forward(input_ids, token_type_ids)?;
|
||||
let attention_mask = prepare_4d_attention_mask(attention_mask, DType::F32, None)?
|
||||
.to_device(hidden_states.device())?;
|
||||
let hidden_states = self.encoder.forward(
|
||||
&hidden_states,
|
||||
&attention_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
)?;
|
||||
Ok(hidden_states)
|
||||
}
|
||||
}
|
||||
|
||||
struct XLMRobertaLMHead {
|
||||
dense: Linear,
|
||||
layer_norm: LayerNorm,
|
||||
}
|
||||
|
||||
impl XLMRobertaLMHead {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let dense = linear(cfg.hidden_size, cfg.hidden_size, vb.pp("dense"))?;
|
||||
let layer_norm =
|
||||
candle_nn::layer_norm(cfg.hidden_size, cfg.layer_norm_eps, vb.pp("layer_norm"))?;
|
||||
Ok(Self { dense, layer_norm })
|
||||
}
|
||||
|
||||
fn forward(&self, hidden_states: &Tensor, shared_embeddings: &Tensor) -> Result<Tensor> {
|
||||
let hidden_states = self.dense.forward(hidden_states)?;
|
||||
let hidden_states = candle_nn::Activation::Gelu.forward(&hidden_states)?;
|
||||
let hidden_states = self.layer_norm.forward(&hidden_states)?;
|
||||
let hidden_states = hidden_states.broadcast_matmul(shared_embeddings)?;
|
||||
Ok(hidden_states)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct XLMRobertaForMaskedLM {
|
||||
roberta: XLMRobertaModel,
|
||||
lm_head: XLMRobertaLMHead,
|
||||
}
|
||||
|
||||
impl XLMRobertaForMaskedLM {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let roberta = XLMRobertaModel::new(cfg, vb.pp("roberta"))?;
|
||||
let lm_head = XLMRobertaLMHead::new(cfg, vb.pp("lm_head"))?;
|
||||
Ok(Self { roberta, lm_head })
|
||||
}
|
||||
|
||||
pub fn forward(
|
||||
&self,
|
||||
input_ids: &Tensor,
|
||||
attention_mask: &Tensor,
|
||||
token_type_ids: &Tensor,
|
||||
past_key_value: Option<(&Tensor, &Tensor)>,
|
||||
encoder_hidden_states: Option<&Tensor>,
|
||||
encoder_attention_mask: Option<&Tensor>,
|
||||
) -> Result<Tensor> {
|
||||
let hidden_states = self.roberta.forward(
|
||||
input_ids,
|
||||
attention_mask,
|
||||
token_type_ids,
|
||||
past_key_value,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
)?;
|
||||
let lm_logits = self.lm_head.forward(
|
||||
&hidden_states,
|
||||
&self
|
||||
.roberta
|
||||
.embeddings
|
||||
.word_embeddings
|
||||
.embeddings()
|
||||
.t()?
|
||||
.unsqueeze(0)?,
|
||||
)?;
|
||||
Ok(lm_logits)
|
||||
}
|
||||
}
|
||||
|
||||
struct XLMRobertaClassificationHead {
|
||||
dense: Linear,
|
||||
out_proj: Linear,
|
||||
}
|
||||
|
||||
impl XLMRobertaClassificationHead {
|
||||
fn new(num_labels: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let dense = linear(cfg.hidden_size, cfg.hidden_size, vb.pp("dense"))?;
|
||||
let out_proj = linear(cfg.hidden_size, num_labels, vb.pp("out_proj"))?;
|
||||
Ok(Self { dense, out_proj })
|
||||
}
|
||||
|
||||
fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
|
||||
let cls_states = hidden_states.get_on_dim(1, 0)?.contiguous()?;
|
||||
let hidden_states = self.dense.forward(&cls_states)?;
|
||||
let hidden_states = candle_nn::Activation::GeluPytorchTanh.forward(&hidden_states)?;
|
||||
let hidden_states = self.out_proj.forward(&hidden_states)?;
|
||||
Ok(hidden_states)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct XLMRobertaForSequenceClassification {
|
||||
roberta: XLMRobertaModel,
|
||||
classifier: XLMRobertaClassificationHead,
|
||||
}
|
||||
|
||||
impl XLMRobertaForSequenceClassification {
|
||||
pub fn new(num_labels: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let roberta = XLMRobertaModel::new(cfg, vb.pp("roberta"))?;
|
||||
let classifier = XLMRobertaClassificationHead::new(num_labels, cfg, vb.pp("classifier"))?;
|
||||
Ok(Self {
|
||||
roberta,
|
||||
classifier,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn forward(
|
||||
&self,
|
||||
input_ids: &Tensor,
|
||||
attention_mask: &Tensor,
|
||||
token_type_ids: &Tensor,
|
||||
) -> Result<Tensor> {
|
||||
let hidden_states =
|
||||
self.roberta
|
||||
.forward(input_ids, attention_mask, token_type_ids, None, None, None)?;
|
||||
self.classifier.forward(&hidden_states)
|
||||
}
|
||||
}
|
||||
|
||||
fn prepare_4d_attention_mask(
|
||||
mask: &Tensor,
|
||||
dtype: DType,
|
||||
tgt_len: Option<usize>,
|
||||
) -> Result<Tensor> {
|
||||
let bsz = mask.dim(0)?;
|
||||
let src_len = mask.dim(1)?;
|
||||
let tgt_len = tgt_len.unwrap_or(src_len);
|
||||
|
||||
let expanded_mask = mask
|
||||
.unsqueeze(1)?
|
||||
.unsqueeze(2)?
|
||||
.expand((bsz, 1, tgt_len, src_len))?
|
||||
.to_dtype(dtype)?;
|
||||
|
||||
let inverted_mask = (1.0 - expanded_mask)?;
|
||||
|
||||
(inverted_mask * get_dtype_min_val(dtype))?.to_dtype(dtype)
|
||||
}
|
||||
|
||||
fn get_dtype_min_val(dtype: DType) -> f64 {
|
||||
match dtype {
|
||||
DType::F32 => f32::MIN as f64,
|
||||
DType::F64 => f64::MIN,
|
||||
_ => panic!("Unsupported data type"),
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user