mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 02:16:37 +00:00
Add Moondream transformer implementation and example (#1970)
* moondream implementation * add moondream example * change config default activation * Add assets and integrate phi mixformer with example * Make use of kv cache and fix seq_len bug; Clean up example code * Add README link to example * Remove pos_embed scaling; Remove assets; Add to README; Expand VisionConfig * Delete image * Use apply instead of forward
This commit is contained in:
26
candle-examples/examples/moondream/README.md
Normal file
26
candle-examples/examples/moondream/README.md
Normal file
@ -0,0 +1,26 @@
|
||||
# candle-moondream
|
||||
|
||||
[Moondream](https://github.com/vikhyat/moondream) is a computer-vision model can answer real-world questions about images. It's tiny by today's models, with only 1.6B parameters. That enables it to run on a variety of devices, including mobile phones and edge devices.
|
||||
|
||||
## Running some examples
|
||||
First download an example image
|
||||
```bash
|
||||
$ wget https://raw.githubusercontent.com/vikhyat/moondream/main/assets/demo-1.jpg
|
||||
```
|
||||
|
||||
<img src="https://raw.githubusercontent.com/vikhyat/moondream/main/assets/demo-1.jpg" width="200">
|
||||
|
||||
Now you can run Moondream from the `candle-examples` crate:
|
||||
```bash
|
||||
$ cargo run --example moondream --release -- --prompt "What is the girl eating?" --image "./demo-1.jpg"
|
||||
|
||||
avavx: false, neon: true, simd128: false, f16c: false
|
||||
temp: 0.00 repeat-penalty: 1.00 repeat-last-n: 64
|
||||
retrieved the files in 3.395583ms
|
||||
Running on CPU, to run on GPU(metal), build this example with `--features metal`
|
||||
loaded the model in 5.485493792s
|
||||
loaded and encoded the image Tensor[dims 3, 378, 378; f32] in 4.801396417s
|
||||
starting the inference loop
|
||||
The girl is eating a hamburger.<
|
||||
9 tokens generated (0.68 token/s)
|
||||
```
|
245
candle-examples/examples/moondream/main.rs
Normal file
245
candle-examples/examples/moondream/main.rs
Normal file
@ -0,0 +1,245 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::{generation::LogitsProcessor, models::moondream};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
struct TextGeneration {
|
||||
model: moondream::Model,
|
||||
device: Device,
|
||||
tokenizer: Tokenizer,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
verbose_prompt: bool,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
model: moondream::Model,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
verbose_prompt: bool,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
Self {
|
||||
model,
|
||||
tokenizer,
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
verbose_prompt,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn run(&mut self, prompt: &str, image_embeds: &Tensor, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
println!("starting the inference loop");
|
||||
let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?;
|
||||
if tokens.is_empty() {
|
||||
anyhow::bail!("Empty prompts are not supported in the Moondream model.")
|
||||
}
|
||||
if self.verbose_prompt {
|
||||
for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
|
||||
let token = token.replace('▁', " ").replace("<0x0A>", "\n");
|
||||
println!("{id:7} -> '{token}'");
|
||||
}
|
||||
}
|
||||
|
||||
let mut tokens = tokens.get_ids().to_vec();
|
||||
let mut generated_tokens = 0usize;
|
||||
|
||||
let eos_token = match self.tokenizer.get_vocab(true).get("END") {
|
||||
Some(token) => *token,
|
||||
None => anyhow::bail!("cannot find the EOS token"),
|
||||
};
|
||||
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0..sample_len {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = if index > 0 {
|
||||
self.model.text_model.forward(&input)?
|
||||
} else {
|
||||
self.model
|
||||
.text_model
|
||||
.forward_with_img(&input, &image_embeds)?
|
||||
};
|
||||
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
self.repeat_penalty,
|
||||
&tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
if next_token == eos_token {
|
||||
break;
|
||||
}
|
||||
let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
|
||||
print!("{token}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
|
||||
let dt = start_gen.elapsed();
|
||||
println!(
|
||||
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||
generated_tokens as f64 / dt.as_secs_f64()
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
/// Display the token for the specified prompt.
|
||||
#[arg(long)]
|
||||
verbose_prompt: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
#[arg(long)]
|
||||
image: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
#[arg(long, default_value_t = 5000)]
|
||||
sample_len: usize,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.0)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
/// Loads an image from disk using the image crate, this returns a tensor with shape
|
||||
/// (3, 378, 378).
|
||||
pub fn load_image<P: AsRef<std::path::Path>>(p: P) -> candle::Result<Tensor> {
|
||||
let img = image::io::Reader::open(p)?
|
||||
.decode()
|
||||
.map_err(candle::Error::wrap)?
|
||||
.resize_to_fill(378, 378, image::imageops::FilterType::Triangle); // Adjusted to 378x378
|
||||
let img = img.to_rgb8();
|
||||
let data = img.into_raw();
|
||||
let data = Tensor::from_vec(data, (378, 378, 3), &Device::Cpu)?.permute((2, 0, 1))?;
|
||||
let mean = Tensor::new(&[0.5f32, 0.5, 0.5], &Device::Cpu)?.reshape((3, 1, 1))?;
|
||||
let std = Tensor::new(&[0.5f32, 0.5, 0.5], &Device::Cpu)?.reshape((3, 1, 1))?;
|
||||
(data.to_dtype(candle::DType::F32)? / 255.)?
|
||||
.broadcast_sub(&mean)?
|
||||
.broadcast_div(&std)
|
||||
}
|
||||
|
||||
#[tokio::main]
|
||||
async fn main() -> anyhow::Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature.unwrap_or(0.),
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n
|
||||
);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = hf_hub::api::tokio::Api::new()?;
|
||||
let repo = api.model("vikhyatk/moondream2".to_string());
|
||||
let model_file = repo.get("model.safetensors").await?;
|
||||
let tokenizer = repo.get("tokenizer.json").await?;
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
|
||||
let config = moondream::Config::v2();
|
||||
let model = moondream::Model::new(&config, vb)?;
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let image = load_image(args.image)?.to_device(&device)?;
|
||||
let image_embeds = image.unsqueeze(0)?;
|
||||
let image_embeds = image_embeds.apply(model.vision_encoder())?;
|
||||
println!(
|
||||
"loaded and encoded the image {image:?} in {:?}",
|
||||
start.elapsed()
|
||||
);
|
||||
|
||||
let prompt = format!("\n\nQuestion: {0}\n\nAnswer:", args.prompt);
|
||||
|
||||
let mut pipeline = TextGeneration::new(
|
||||
model,
|
||||
tokenizer,
|
||||
args.seed,
|
||||
args.temperature,
|
||||
args.top_p,
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n,
|
||||
args.verbose_prompt,
|
||||
&device,
|
||||
);
|
||||
pipeline.run(&prompt, &image_embeds, args.sample_len)?;
|
||||
|
||||
Ok(())
|
||||
}
|
Reference in New Issue
Block a user