Add Moondream transformer implementation and example (#1970)

* moondream implementation

* add moondream example

* change config default activation

* Add assets and integrate phi mixformer with example

* Make use of kv cache and fix seq_len bug; Clean up example code

* Add README link to example

* Remove pos_embed scaling; Remove assets; Add to README; Expand VisionConfig

* Delete image

* Use apply instead of forward
This commit is contained in:
Santiago Medina
2024-03-30 23:54:56 -07:00
committed by GitHub
parent 3144150b8d
commit 92f81d2fcb
6 changed files with 602 additions and 0 deletions

View File

@ -131,6 +131,8 @@ We also provide a some command line based examples using state of the art models
dedicated submodels for hand-writing and printed recognition. dedicated submodels for hand-writing and printed recognition.
- [Marian-MT](./candle-examples/examples/marian-mt/): neural machine translation - [Marian-MT](./candle-examples/examples/marian-mt/): neural machine translation
model, generates the translated text from the input text. model, generates the translated text from the input text.
- [Moondream](./candle-examples/examples/moondream/): tiny computer-vision model
that can answer real-world questions about images.
Run them using commands like: Run them using commands like:
``` ```

View File

@ -0,0 +1,26 @@
# candle-moondream
[Moondream](https://github.com/vikhyat/moondream) is a computer-vision model can answer real-world questions about images. It's tiny by today's models, with only 1.6B parameters. That enables it to run on a variety of devices, including mobile phones and edge devices.
## Running some examples
First download an example image
```bash
$ wget https://raw.githubusercontent.com/vikhyat/moondream/main/assets/demo-1.jpg
```
<img src="https://raw.githubusercontent.com/vikhyat/moondream/main/assets/demo-1.jpg" width="200">
Now you can run Moondream from the `candle-examples` crate:
```bash
$ cargo run --example moondream --release -- --prompt "What is the girl eating?" --image "./demo-1.jpg"
avavx: false, neon: true, simd128: false, f16c: false
temp: 0.00 repeat-penalty: 1.00 repeat-last-n: 64
retrieved the files in 3.395583ms
Running on CPU, to run on GPU(metal), build this example with `--features metal`
loaded the model in 5.485493792s
loaded and encoded the image Tensor[dims 3, 378, 378; f32] in 4.801396417s
starting the inference loop
The girl is eating a hamburger.<
9 tokens generated (0.68 token/s)
```

View File

@ -0,0 +1,245 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::{Error as E, Result};
use clap::Parser;
use candle::{DType, Device, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::{generation::LogitsProcessor, models::moondream};
use tokenizers::Tokenizer;
struct TextGeneration {
model: moondream::Model,
device: Device,
tokenizer: Tokenizer,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
verbose_prompt: bool,
}
impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(
model: moondream::Model,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
repeat_penalty: f32,
repeat_last_n: usize,
verbose_prompt: bool,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
tokenizer,
logits_processor,
repeat_penalty,
repeat_last_n,
verbose_prompt,
device: device.clone(),
}
}
fn run(&mut self, prompt: &str, image_embeds: &Tensor, sample_len: usize) -> Result<()> {
use std::io::Write;
println!("starting the inference loop");
let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?;
if tokens.is_empty() {
anyhow::bail!("Empty prompts are not supported in the Moondream model.")
}
if self.verbose_prompt {
for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
let token = token.replace('▁', " ").replace("<0x0A>", "\n");
println!("{id:7} -> '{token}'");
}
}
let mut tokens = tokens.get_ids().to_vec();
let mut generated_tokens = 0usize;
let eos_token = match self.tokenizer.get_vocab(true).get("END") {
Some(token) => *token,
None => anyhow::bail!("cannot find the EOS token"),
};
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = if index > 0 {
self.model.text_model.forward(&input)?
} else {
self.model
.text_model
.forward_with_img(&input, &image_embeds)?
};
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token {
break;
}
let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
print!("{token}");
std::io::stdout().flush()?;
}
let dt = start_gen.elapsed();
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64()
);
Ok(())
}
}
#[derive(Parser)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
/// Display the token for the specified prompt.
#[arg(long)]
verbose_prompt: bool,
#[arg(long)]
prompt: String,
#[arg(long)]
image: String,
/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
#[arg(long, default_value_t = 5000)]
sample_len: usize,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.0)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
}
/// Loads an image from disk using the image crate, this returns a tensor with shape
/// (3, 378, 378).
pub fn load_image<P: AsRef<std::path::Path>>(p: P) -> candle::Result<Tensor> {
let img = image::io::Reader::open(p)?
.decode()
.map_err(candle::Error::wrap)?
.resize_to_fill(378, 378, image::imageops::FilterType::Triangle); // Adjusted to 378x378
let img = img.to_rgb8();
let data = img.into_raw();
let data = Tensor::from_vec(data, (378, 378, 3), &Device::Cpu)?.permute((2, 0, 1))?;
let mean = Tensor::new(&[0.5f32, 0.5, 0.5], &Device::Cpu)?.reshape((3, 1, 1))?;
let std = Tensor::new(&[0.5f32, 0.5, 0.5], &Device::Cpu)?.reshape((3, 1, 1))?;
(data.to_dtype(candle::DType::F32)? / 255.)?
.broadcast_sub(&mean)?
.broadcast_div(&std)
}
#[tokio::main]
async fn main() -> anyhow::Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature.unwrap_or(0.),
args.repeat_penalty,
args.repeat_last_n
);
let start = std::time::Instant::now();
let api = hf_hub::api::tokio::Api::new()?;
let repo = api.model("vikhyatk/moondream2".to_string());
let model_file = repo.get("model.safetensors").await?;
let tokenizer = repo.get("tokenizer.json").await?;
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?;
let start = std::time::Instant::now();
let device = candle_examples::device(args.cpu)?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
let config = moondream::Config::v2();
let model = moondream::Model::new(&config, vb)?;
println!("loaded the model in {:?}", start.elapsed());
let start = std::time::Instant::now();
let image = load_image(args.image)?.to_device(&device)?;
let image_embeds = image.unsqueeze(0)?;
let image_embeds = image_embeds.apply(model.vision_encoder())?;
println!(
"loaded and encoded the image {image:?} in {:?}",
start.elapsed()
);
let prompt = format!("\n\nQuestion: {0}\n\nAnswer:", args.prompt);
let mut pipeline = TextGeneration::new(
model,
tokenizer,
args.seed,
args.temperature,
args.top_p,
args.repeat_penalty,
args.repeat_last_n,
args.verbose_prompt,
&device,
);
pipeline.run(&prompt, &image_embeds, args.sample_len)?;
Ok(())
}

View File

@ -438,6 +438,26 @@ impl MixFormerSequentialForCausalLM {
xs.narrow(1, seq_len - 1, 1)?.apply(&self.head)?.squeeze(1) xs.narrow(1, seq_len - 1, 1)?.apply(&self.head)?.squeeze(1)
} }
pub fn forward_with_img(&mut self, xs: &Tensor, img_embeds: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
let xs = xs.apply(&self.embedding)?;
let mut xs = Tensor::cat(&[img_embeds.clone(), xs], 1)?;
let (_b_size, seq_len, _embds) = xs.dims3()?;
let mask = if seq_len <= 1 {
None
} else {
Some(get_mask(seq_len, xs.device())?)
};
for block in self.blocks.iter_mut() {
xs = block.forward(&xs, mask.as_ref())?
}
let xs = xs
.narrow(1, seq_len - 1, 1)?
.apply(&self.head)?
.squeeze(1)?;
Ok(xs)
}
pub fn clear_kv_cache(&mut self) { pub fn clear_kv_cache(&mut self) {
self.blocks.iter_mut().for_each(|b| b.clear_kv_cache()) self.blocks.iter_mut().for_each(|b| b.clear_kv_cache())
} }

View File

@ -24,6 +24,7 @@ pub mod mistral;
pub mod mixformer; pub mod mixformer;
pub mod mixtral; pub mod mixtral;
pub mod mobileone; pub mod mobileone;
pub mod moondream;
pub mod mpt; pub mod mpt;
pub mod persimmon; pub mod persimmon;
pub mod phi; pub mod phi;

View File

@ -0,0 +1,308 @@
use crate::models::mixformer::{Config as PhiConfig, MixFormerSequentialForCausalLM as PhiModel};
use candle::{IndexOp, Result, Tensor, D};
use candle_nn::{layer_norm, linear_b, Linear, Module, VarBuilder};
pub struct Config {
pub phi_config: PhiConfig,
pub vision_config: VisionConfig,
}
impl Config {
pub fn v2() -> Self {
Self {
phi_config: PhiConfig::v1_5(),
vision_config: VisionConfig::v2(),
}
}
}
fn scaled_dot_product_attention(q: &Tensor, k: &Tensor, v: &Tensor) -> Result<Tensor> {
let dim = q.dim(D::Minus1)?;
let scale_factor = 1.0 / (dim as f64).sqrt();
let k = k.transpose(D::Minus2, D::Minus1)?.contiguous()?;
let mut attn_weights = (q.contiguous()?.matmul(&k)? * scale_factor)?;
attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?.contiguous()?;
let attn_weights = attn_weights.matmul(&v.contiguous()?)?;
Ok(attn_weights)
}
#[derive(Debug, Clone, PartialEq, serde::Deserialize)]
pub struct VisionConfig {
image_embedding_dim: usize,
model_dim: usize,
hidden_dim: usize,
hidden_features: usize,
embed_len: usize,
embed_dim: usize,
num_blocks: usize,
num_heads: usize,
act: candle_nn::Activation,
}
impl VisionConfig {
pub fn v2() -> Self {
Self {
image_embedding_dim: 1152,
model_dim: 2048,
hidden_dim: 2048 * 4,
hidden_features: 4304,
embed_len: 729,
embed_dim: 1152,
num_blocks: 27,
num_heads: 16,
act: candle_nn::Activation::Gelu,
}
}
}
#[derive(Debug, Clone)]
struct LinearPatchEmbedding {
linear: Linear,
}
impl LinearPatchEmbedding {
fn new(vb: VarBuilder) -> Result<Self> {
let linear = linear_b(588, 1152, true, vb.pp("linear"))?;
Ok(Self { linear })
}
}
impl Module for LinearPatchEmbedding {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.linear)
}
}
#[derive(Debug, Clone)]
struct Attention {
num_heads: usize,
head_dim: usize,
qkv: Linear,
proj: Linear,
}
impl Attention {
pub fn new(vb: VarBuilder, dim: usize, num_heads: usize) -> Result<Self> {
let qkv = linear_b(dim, dim * 3, true, vb.pp("qkv"))?;
let proj = linear_b(dim, dim, true, vb.pp("proj"))?;
Ok(Self {
num_heads,
head_dim: dim / num_heads,
qkv,
proj,
})
}
}
impl Module for Attention {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let (b, n, c) = xs.dims3()?;
let qkv = xs
.apply(&self.qkv)?
.reshape((b, n, 3, self.num_heads, self.head_dim))?
.permute((2, 0, 3, 1, 4))?;
let (q, k, v) = (qkv.i(0)?, qkv.i(1)?, qkv.i(2)?);
let attn_weights = scaled_dot_product_attention(&q, &k, &v)?;
let attn_weights = attn_weights.transpose(1, 2)?.reshape((b, n, c))?;
attn_weights.apply(&self.proj)
}
}
#[derive(Debug, Clone)]
struct VitBlock {
attn: Attention,
mlp: Mlp,
norm1: candle_nn::LayerNorm,
norm2: candle_nn::LayerNorm,
}
impl VitBlock {
fn new(vb: VarBuilder, dim: usize, num_heads: usize, cfg: &VisionConfig) -> Result<Self> {
let attn = Attention::new(vb.pp("attn"), dim, num_heads)?;
let mlp = Mlp::new(vb.pp("mlp"), dim, cfg.hidden_features, dim, cfg.act)?;
let norm1 = layer_norm(dim, 1e-5, vb.pp("norm1"))?;
let norm2 = layer_norm(dim, 1e-5, vb.pp("norm2"))?;
Ok(Self {
attn,
mlp,
norm1,
norm2,
})
}
}
impl Module for VitBlock {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let ys = xs.apply(&self.norm1)?.apply(&self.attn)?;
let xs = (xs + &ys)?;
let ys = xs.apply(&self.norm2)?.apply(&self.mlp)?;
let xs = (&xs + &ys)?;
Ok(xs)
}
}
#[derive(Debug, Clone)]
struct VisionTransformer {
patch_embed: LinearPatchEmbedding,
pos_embed: Tensor,
blocks: Vec<VitBlock>,
norm: candle_nn::LayerNorm,
}
impl VisionTransformer {
fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
let patch_embed = LinearPatchEmbedding::new(vb.pp("patch_embed"))?;
let pos_embed = vb.get((1, cfg.embed_len, cfg.embed_dim), "pos_embed")?;
let blocks = (0..cfg.num_blocks)
.map(|i| {
VitBlock::new(
vb.pp(&format!("blocks.{}", i)),
cfg.embed_dim,
cfg.num_heads,
cfg,
)
})
.collect::<Result<_>>()?;
let norm = layer_norm(cfg.embed_dim, 1e-5, vb.pp("norm"))?;
Ok(Self {
patch_embed,
pos_embed,
blocks,
norm,
})
}
}
impl Module for VisionTransformer {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let mut xs = (&xs.apply(&self.patch_embed)? + &self.pos_embed)?;
for block in self.blocks.iter() {
xs = xs.apply(block)?;
}
xs.apply(&self.norm)
}
}
#[derive(Debug, Clone)]
pub struct Encoder {
model: VisionTransformer,
}
impl Encoder {
fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
let model = VisionTransformer::new(cfg, vb.pp("model.visual"))?;
Ok(Self { model })
}
}
impl Module for Encoder {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.model)
}
}
#[derive(Debug, Clone)]
struct Mlp {
fc1: Linear,
act: candle_nn::Activation,
fc2: Linear,
}
impl Mlp {
fn new(
vb: VarBuilder,
in_features: usize,
hidden_features: usize,
out_features: usize,
act: candle_nn::Activation,
) -> Result<Self> {
let fc1 = linear_b(in_features, hidden_features, true, vb.pp("fc1"))?;
let fc2 = linear_b(hidden_features, out_features, true, vb.pp("fc2"))?;
Ok(Self { fc1, act, fc2 })
}
}
impl Module for Mlp {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.fc1)?.apply(&self.act)?.apply(&self.fc2)
}
}
#[derive(Debug, Clone)]
struct VisionProjection {
mlp: Mlp,
}
impl VisionProjection {
fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
let mlp = Mlp::new(
vb.pp("mlp"),
cfg.image_embedding_dim,
cfg.hidden_dim,
cfg.model_dim,
cfg.act,
)?;
Ok(Self { mlp })
}
}
impl Module for VisionProjection {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.mlp)
}
}
#[derive(Debug, Clone)]
pub struct VisionEncoder {
encoder: Encoder,
projection: VisionProjection,
}
impl VisionEncoder {
pub fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
let encoder = Encoder::new(cfg, vb.pp("encoder"))?;
let projection = VisionProjection::new(cfg, vb.pp("projection"))?;
Ok(Self {
encoder,
projection,
})
}
}
impl Module for VisionEncoder {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let (b, c, hp1, wp2) = xs.dims4()?;
let (p1, p2) = (14, 14);
let h = hp1 / p1;
let w = wp2 / p2;
let xs = xs
.reshape((b, c, h, p1, h, p2))?
.permute((0, 2, 4, 1, 3, 5))?
.reshape((b, h * w, c * p1 * p2))?;
xs.apply(&self.encoder)?.apply(&self.projection)
}
}
pub struct Model {
pub text_model: PhiModel,
pub vision_encoder: VisionEncoder,
}
impl Model {
pub fn new(config: &Config, vb: VarBuilder) -> Result<Self> {
let text_model = PhiModel::new_v2(&config.phi_config, vb.pp("text_model"))?;
let vision_encoder = VisionEncoder::new(&config.vision_config, vb.pp("vision_encoder"))?;
Ok(Self {
text_model,
vision_encoder,
})
}
pub fn vision_encoder(&self) -> &VisionEncoder {
&self.vision_encoder
}
pub fn text_model(&mut self) -> &mut PhiModel {
&mut self.text_model
}
}