From b1d42231fba72ff508bc02c34c65feab5409ec4c Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 07:23:02 +0100 Subject: [PATCH 01/36] Start sketching the whisper model. --- candle-examples/examples/whisper/main.rs | 281 +++++++++++++++++++++++ 1 file changed, 281 insertions(+) create mode 100644 candle-examples/examples/whisper/main.rs diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs new file mode 100644 index 00000000..7b2d0c74 --- /dev/null +++ b/candle-examples/examples/whisper/main.rs @@ -0,0 +1,281 @@ +#![allow(dead_code)] +// https://github.com/openai/whisper/blob/main/whisper/model.py + +use anyhow::{Error as E, Result}; +use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor}; +use clap::Parser; +use std::collections::HashMap; + +const DTYPE: DType = DType::F32; + +struct VarBuilder<'a> { + safetensors: Option<(HashMap, Vec>)>, + dtype: DType, + device: Device, +} + +impl<'a> VarBuilder<'a> { + pub fn from_safetensors( + safetensors: Vec>, + dtype: DType, + device: Device, + ) -> Self { + let mut routing = HashMap::new(); + for (index, sf) in safetensors.iter().enumerate() { + for k in sf.names() { + routing.insert(k.to_string(), index); + } + } + Self { + safetensors: Some((routing, safetensors)), + device, + dtype, + } + } + + pub fn zeros(dtype: DType, device: Device) -> Self { + Self { + safetensors: None, + device, + dtype, + } + } + + pub fn get>(&self, s: S, tensor_name: &str) -> candle::Result { + let s: Shape = s.into(); + match &self.safetensors { + None => Tensor::zeros(s, self.dtype, &self.device), + Some((routing, safetensors)) => { + // Unwrap or 0 just to let the proper error flow. + let index = routing.get(tensor_name).unwrap_or(&0); + let tensor = safetensors[*index] + .tensor(tensor_name, &self.device)? + .to_dtype(self.dtype)?; + if *tensor.shape() != s { + let msg = format!("shape mismatch for {tensor_name}"); + Err(candle::Error::UnexpectedShape { + msg, + expected: s, + got: tensor.shape().clone(), + })? + } + Ok(tensor) + } + } + } +} + +#[derive(Debug, Clone, Copy, PartialEq, Eq)] +enum HiddenAct { + Gelu, + Relu, +} + +impl HiddenAct { + fn forward(&self, xs: &Tensor) -> candle::Result { + match self { + Self::Gelu => xs.gelu(), + Self::Relu => xs.relu(), + } + } +} + +#[derive(Debug, Clone, PartialEq)] +struct Config { + n_mels: usize, + n_audio_ctx: usize, + n_audio_state: usize, + n_audio_head: usize, + n_audio_layer: usize, + n_vocab: usize, + n_text_ctx: usize, + n_text_state: usize, + n_text_head: usize, + n_text_layer: usize, +} + +struct Embedding { + embeddings: Tensor, + hidden_size: usize, +} + +impl Embedding { + fn new(embeddings: Tensor, hidden_size: usize) -> Self { + Self { + embeddings, + hidden_size, + } + } + + fn load(vocab_size: usize, hidden_size: usize, p: &str, vb: &VarBuilder) -> Result { + let embeddings = vb.get((vocab_size, hidden_size), &format!("{p}.weight"))?; + Ok(Self::new(embeddings, hidden_size)) + } + + fn forward(&self, indexes: &Tensor) -> Result { + let mut final_dims = indexes.dims().to_vec(); + final_dims.push(self.hidden_size); + let indexes = indexes.flatten_all()?; + let values = Tensor::embedding(&indexes, &self.embeddings)?; + let values = values.reshape(final_dims)?; + Ok(values) + } +} + +struct Linear { + weight: Tensor, + bias: Option, +} + +impl Linear { + fn load(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result { + let weight = vb.get((size2, size1), &format!("{p}.weight"))?; + let bias = vb.get(size2, &format!("{p}.bias"))?; + Ok(Self { + weight, + bias: Some(bias), + }) + } + + fn load_no_bias(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result { + let weight = vb.get((size2, size1), &format!("{p}.weight"))?; + Ok(Self { weight, bias: None }) + } + + fn forward(&self, x: &Tensor) -> candle::Result { + let (bsize, _, _) = x.shape().r3()?; + let w = self.weight.broadcast_left(bsize)?.t()?; + let x = x.matmul(&w)?; + match &self.bias { + None => Ok(x), + Some(bias) => x.broadcast_add(bias), + } + } +} + +struct Dropout { + pr: f64, +} + +impl Dropout { + fn new(pr: f64) -> Self { + Self { pr } + } + + fn forward(&self, x: &Tensor) -> Result { + // TODO + Ok(x.clone()) + } +} + +// This layer norm version handles both weight and bias so removes the mean. +struct LayerNorm { + weight: Tensor, + bias: Tensor, + eps: f64, +} + +impl LayerNorm { + fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self { + Self { weight, bias, eps } + } + + fn load(size: usize, eps: f64, p: &str, vb: &VarBuilder) -> Result { + let weight = vb.get(size, &format!("{p}.weight"))?; + let bias = vb.get(size, &format!("{p}.bias"))?; + Ok(Self::new(weight, bias, eps)) + } + + fn forward(&self, x: &Tensor) -> Result { + let (_bsize, _seq_len, hidden_size) = x.shape().r3()?; + let mean_x = (x.sum(&[2])? / hidden_size as f64)?; + let x = x.broadcast_sub(&mean_x)?; + let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?; + let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?; + let x = x_normed + .broadcast_mul(&self.weight)? + .broadcast_add(&self.bias)?; + Ok(x) + } +} + +// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62 +struct MultiHeadAttention { + query: Linear, + key: Linear, + value: Linear, + out: Linear, + n_head: usize, +} + +impl MultiHeadAttention { + fn load(n_head: usize, n: usize, p: &str, vb: &VarBuilder) -> Result { + let query = Linear::load(n, n, &format!("{p}.query"), vb)?; + let value = Linear::load_no_bias(n, n, &format!("{p}.value"), vb)?; + let key = Linear::load(n, n, &format!("{p}.key"), vb)?; + let out = Linear::load(n, n, &format!("{p}.out"), vb)?; + Ok(Self { + query, + key, + value, + out, + n_head, + }) + } + + fn forward(&self, x: &Tensor) -> Result<(Tensor, Tensor)> { + let q = self.query.forward(x)?; + let k = self.key.forward(x)?; + let v = self.value.forward(x)?; + let (wv, qk) = self.qkv_attention(&q, &k, &v)?; + let out = self.out.forward(&wv)?; + Ok((out, qk)) + } + + fn qkv_attention(&self, q: &Tensor, k: &Tensor, v: &Tensor) -> Result<(Tensor, Tensor)> { + let (n_batch, n_ctx, n_state) = q.shape().r3()?; + let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head]; + let scale = ((n_state / self.n_head) as f64).powf(-0.25); + let q = (q.reshape(target_dims)?.transpose(1, 2)? * scale)?; + let k = (k.reshape(target_dims)?.transpose(1, 2)?.transpose(2, 3)? * scale)?; + let v = v.reshape(target_dims)?.transpose(1, 2)?; + let qk = q.matmul(&k)?; + let w = qk.softmax(qk.rank() - 1)?; + let wv = w.matmul(&v)?.transpose(1, 2)?.flatten(Some(2), None)?; + let qk = qk.detach()?; + Ok((wv, qk)) + } +} + +#[derive(Parser, Debug)] +#[command(author, version, about, long_about = None)] +struct Args { + /// Run on CPU rather than on GPU. + #[arg(long)] + cpu: bool, + + #[arg(long)] + tokenizer_config: String, + + #[arg(long)] + weights: String, +} + +fn main() -> Result<()> { + use tokenizers::Tokenizer; + + let args = Args::parse(); + let device = if args.cpu { + Device::Cpu + } else { + Device::new_cuda(0)? + }; + + let mut tokenizer = Tokenizer::from_file(args.tokenizer_config).map_err(E::msg)?; + let _tokenizer = tokenizer.with_padding(None).with_truncation(None); + + let weights = unsafe { candle::safetensors::MmapedFile::new(args.weights)? }; + let weights = weights.deserialize()?; + let _vb = VarBuilder::from_safetensors(vec![weights], DTYPE, device); + Ok(()) +} From 0ca2af6940e2812e65a2e2af7f53ce9b8c1980d4 Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 07:43:36 +0100 Subject: [PATCH 02/36] Add the residual attention block. --- candle-examples/examples/whisper/main.rs | 92 +++++++++++++++++++----- 1 file changed, 75 insertions(+), 17 deletions(-) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 7b2d0c74..1e32c972 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -176,14 +176,14 @@ struct LayerNorm { } impl LayerNorm { - fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self { - Self { weight, bias, eps } - } - - fn load(size: usize, eps: f64, p: &str, vb: &VarBuilder) -> Result { + fn load(size: usize, p: &str, vb: &VarBuilder) -> Result { let weight = vb.get(size, &format!("{p}.weight"))?; let bias = vb.get(size, &format!("{p}.bias"))?; - Ok(Self::new(weight, bias, eps)) + Ok(Self { + weight, + bias, + eps: 1e-5, + }) } fn forward(&self, x: &Tensor) -> Result { @@ -209,11 +209,11 @@ struct MultiHeadAttention { } impl MultiHeadAttention { - fn load(n_head: usize, n: usize, p: &str, vb: &VarBuilder) -> Result { - let query = Linear::load(n, n, &format!("{p}.query"), vb)?; - let value = Linear::load_no_bias(n, n, &format!("{p}.value"), vb)?; - let key = Linear::load(n, n, &format!("{p}.key"), vb)?; - let out = Linear::load(n, n, &format!("{p}.out"), vb)?; + fn load(n_state: usize, n_head: usize, p: &str, vb: &VarBuilder) -> Result { + let query = Linear::load(n_state, n_state, &format!("{p}.query"), vb)?; + let value = Linear::load_no_bias(n_state, n_state, &format!("{p}.value"), vb)?; + let key = Linear::load(n_state, n_state, &format!("{p}.key"), vb)?; + let out = Linear::load(n_state, n_state, &format!("{p}.out"), vb)?; Ok(Self { query, key, @@ -223,16 +223,16 @@ impl MultiHeadAttention { }) } - fn forward(&self, x: &Tensor) -> Result<(Tensor, Tensor)> { + fn forward(&self, x: &Tensor) -> Result { let q = self.query.forward(x)?; let k = self.key.forward(x)?; let v = self.value.forward(x)?; - let (wv, qk) = self.qkv_attention(&q, &k, &v)?; + let wv = self.qkv_attention(&q, &k, &v)?; let out = self.out.forward(&wv)?; - Ok((out, qk)) + Ok(out) } - fn qkv_attention(&self, q: &Tensor, k: &Tensor, v: &Tensor) -> Result<(Tensor, Tensor)> { + fn qkv_attention(&self, q: &Tensor, k: &Tensor, v: &Tensor) -> Result { let (n_batch, n_ctx, n_state) = q.shape().r3()?; let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head]; let scale = ((n_state / self.n_head) as f64).powf(-0.25); @@ -242,8 +242,66 @@ impl MultiHeadAttention { let qk = q.matmul(&k)?; let w = qk.softmax(qk.rank() - 1)?; let wv = w.matmul(&v)?.transpose(1, 2)?.flatten(Some(2), None)?; - let qk = qk.detach()?; - Ok((wv, qk)) + Ok(wv) + } +} + +// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L111 +struct ResidualAttentionBlock { + attn: MultiHeadAttention, + attn_ln: LayerNorm, + cross_attn: Option, + cross_attn_ln: Option, + mlp_linear1: Linear, + mlp_linear2: Linear, + mlp_ln: LayerNorm, +} + +impl ResidualAttentionBlock { + fn load(n_state: usize, n_head: usize, ca: bool, p: &str, vb: &VarBuilder) -> Result { + let attn = MultiHeadAttention::load(n_state, n_head, &format!("{p}.attn"), vb)?; + let attn_ln = LayerNorm::load(n_state, &format!("{p}.attn_ln"), vb)?; + let (cross_attn, cross_attn_ln) = if ca { + let cross_attn = + MultiHeadAttention::load(n_state, n_head, &format!("{p}.cross_attn"), vb)?; + let cross_attn_ln = LayerNorm::load(n_state, &format!("{p}.cross_attn_ln"), vb)?; + (Some(cross_attn), Some(cross_attn_ln)) + } else { + (None, None) + }; + let n_mlp = n_state * 4; + let mlp_linear1 = Linear::load(n_state, n_mlp, &format!("{p}.mlp.0"), vb)?; + let mlp_linear2 = Linear::load(n_mlp, n_state, &format!("{p}.mlp.2"), vb)?; + let mlp_ln = LayerNorm::load(n_state, &format!("{p}.mlp_ln"), vb)?; + Ok(Self { + attn, + attn_ln, + cross_attn, + cross_attn_ln, + mlp_linear1, + mlp_linear2, + mlp_ln, + }) + } + + fn forward(&self, x: &Tensor) -> Result { + let attn = self.attn.forward(&self.attn_ln.forward(x)?)?; + let mut x = (x + attn)?; + // Cross-Attn + if let Some(cross_attn) = &self.cross_attn { + x = cross_attn.forward(&x)? + } + if let Some(cross_attn_ln) = &self.cross_attn_ln { + x = cross_attn_ln.forward(&x)? + } + // Mlp + let mlp = self.mlp_linear2.forward( + &self + .mlp_linear1 + .forward(&self.mlp_ln.forward(&x)?)? + .gelu()?, + )?; + Ok((x + mlp)?) } } From 512dd9e4d6c278d72f3942da937a40d6cd45f933 Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 08:01:06 +0100 Subject: [PATCH 03/36] Flesh out the whisper example. --- candle-examples/examples/whisper/main.rs | 84 ++++++++++++++++++++++++ 1 file changed, 84 insertions(+) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 1e32c972..e0292e17 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -305,6 +305,90 @@ impl ResidualAttentionBlock { } } +// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143 +struct AudioEncoder { + conv1: Linear, // TODO + conv2: Linear, // TODO + blocks: Vec, + ln_post: LayerNorm, +} + +impl AudioEncoder { + fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result { + let n_state = cfg.n_audio_state; + let n_head = cfg.n_audio_head; + let conv1 = Linear::load(cfg.n_mels, n_state, &format!("{p}.conv1"), vb)?; + let conv2 = Linear::load(n_state, n_state, &format!("{p}.conv2"), vb)?; + let blocks = (0..cfg.n_audio_layer) + .map(|i| { + ResidualAttentionBlock::load(n_state, n_head, false, &format!("{p}.blocks.{i}"), vb) + }) + .collect::>>()?; + let ln_post = LayerNorm::load(n_state, &format!("{p}.ln_post"), vb)?; + Ok(Self { + conv1, + conv2, + blocks, + ln_post, + }) + } + fn forward(&self, _x: &Tensor) -> Result { + todo!() + } +} + +// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L176 +struct TextDecoder { + token_embedding: Embedding, + blocks: Vec, + ln: LayerNorm, + mask: Tensor, +} + +impl TextDecoder { + fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result { + let n_state = cfg.n_text_state; + let n_head = cfg.n_text_head; + let token_embedding = + Embedding::load(cfg.n_vocab, n_state, &format!("{p}.token_embedding"), vb)?; + let blocks = (0..cfg.n_text_layer) + .map(|i| { + ResidualAttentionBlock::load(n_state, n_head, false, &format!("{p}.blocks.{i}"), vb) + }) + .collect::>>()?; + let ln = LayerNorm::load(n_state, &format!("{p}.ln"), vb)?; + let mask = Tensor::new(&[0u32], &vb.device)?; + Ok(Self { + token_embedding, + blocks, + ln, + mask, + }) + } + fn forward(&self, _tokens: &Tensor, _enc: &Tensor) -> Result { + todo!() + } +} + +// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L221 +struct Whisper { + encoder: AudioEncoder, + decoder: TextDecoder, +} + +impl Whisper { + fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result { + let encoder = AudioEncoder::load(&format!("{p}.encoder"), vb, cfg)?; + let decoder = TextDecoder::load(&format!("{p}.decoder"), vb, cfg)?; + Ok(Self { encoder, decoder }) + } + fn forward(&self, mel: &Tensor, tokens: &Tensor) -> Result { + let enc = self.encoder.forward(mel)?; + let dec = self.decoder.forward(tokens, &enc)?; + Ok(dec) + } +} + #[derive(Parser, Debug)] #[command(author, version, about, long_about = None)] struct Args { From 6728a856765ca23f6bf50cd9246bb2f8e63ee41a Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 08:32:03 +0100 Subject: [PATCH 04/36] Add more to the whisper inference. --- candle-examples/examples/whisper/main.rs | 19 ++++++++++++++++--- 1 file changed, 16 insertions(+), 3 deletions(-) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index e0292e17..3e780a2c 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -1,5 +1,7 @@ #![allow(dead_code)] // https://github.com/openai/whisper/blob/main/whisper/model.py +// TODO: +// - kv-cache support? use anyhow::{Error as E, Result}; use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor}; @@ -309,6 +311,7 @@ impl ResidualAttentionBlock { struct AudioEncoder { conv1: Linear, // TODO conv2: Linear, // TODO + positional_embedding: Tensor, blocks: Vec, ln_post: LayerNorm, } @@ -319,6 +322,7 @@ impl AudioEncoder { let n_head = cfg.n_audio_head; let conv1 = Linear::load(cfg.n_mels, n_state, &format!("{p}.conv1"), vb)?; let conv2 = Linear::load(n_state, n_state, &format!("{p}.conv2"), vb)?; + let positional_embedding = Tensor::new(&[0u32], &vb.device)?; // TODO let blocks = (0..cfg.n_audio_layer) .map(|i| { ResidualAttentionBlock::load(n_state, n_head, false, &format!("{p}.blocks.{i}"), vb) @@ -328,12 +332,21 @@ impl AudioEncoder { Ok(Self { conv1, conv2, + positional_embedding, blocks, ln_post, }) } - fn forward(&self, _x: &Tensor) -> Result { - todo!() + fn forward(&self, x: &Tensor) -> Result { + let x = self.conv1.forward(x)?.gelu()?; + let x = self.conv2.forward(&x)?.gelu()?; + let x = x.transpose(1, 2)?; + let mut x = x.broadcast_add(&self.positional_embedding)?; + for block in self.blocks.iter() { + x = block.forward(&x)? + } + let x = self.ln_post.forward(&x)?; + Ok(x) } } @@ -357,7 +370,7 @@ impl TextDecoder { }) .collect::>>()?; let ln = LayerNorm::load(n_state, &format!("{p}.ln"), vb)?; - let mask = Tensor::new(&[0u32], &vb.device)?; + let mask = Tensor::new(&[0u32], &vb.device)?; // TODO Ok(Self { token_embedding, blocks, From 998cfda9c4baefd0fb3407724c344158356d2d31 Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 09:03:25 +0100 Subject: [PATCH 05/36] Sinusoid embeddings. --- candle-examples/examples/whisper/main.rs | 17 ++++++++++++++++- 1 file changed, 16 insertions(+), 1 deletion(-) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 3e780a2c..1930a7a9 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -307,6 +307,21 @@ impl ResidualAttentionBlock { } } +fn sinusoids(length: usize, channels: usize) -> Result { + let max_timescale = 10000f32; + let log_timescale_increment = max_timescale.ln() / (channels / 2 - 1) as f32; + let inv_timescales: Vec<_> = (0..channels / 2) + .map(|i| (i as f32 * (-log_timescale_increment)).exp()) + .collect(); + let arange: Vec<_> = (0..length).map(|c| c as f32).collect(); + let inv_timescales = Tensor::new(inv_timescales.as_slice(), &Device::Cpu)?.unsqueeze(0)?; + let arange = Tensor::new(arange.as_slice(), &Device::Cpu)?.unsqueeze(1)?; + let sh = (length, channels / 2); + let scaled_time = (arange.broadcast_as(sh)? * inv_timescales.broadcast_as(sh)?)?; + let sincos = Tensor::cat(&[scaled_time.sin()?, scaled_time.cos()?], 1)?; + Ok(sincos) +} + // https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143 struct AudioEncoder { conv1: Linear, // TODO @@ -322,7 +337,7 @@ impl AudioEncoder { let n_head = cfg.n_audio_head; let conv1 = Linear::load(cfg.n_mels, n_state, &format!("{p}.conv1"), vb)?; let conv2 = Linear::load(n_state, n_state, &format!("{p}.conv2"), vb)?; - let positional_embedding = Tensor::new(&[0u32], &vb.device)?; // TODO + let positional_embedding = sinusoids(cfg.n_audio_ctx, n_state)?.to_device(&vb.device)?; let blocks = (0..cfg.n_audio_layer) .map(|i| { ResidualAttentionBlock::load(n_state, n_head, false, &format!("{p}.blocks.{i}"), vb) From c09aa4b0f4c1fb074aecbf71aea3e96cadebea60 Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 09:14:28 +0100 Subject: [PATCH 06/36] Add more to the forward pass and fix the cross-attention. --- candle-examples/examples/whisper/main.rs | 37 +++++++++++++++++------- 1 file changed, 26 insertions(+), 11 deletions(-) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 1930a7a9..129c73b8 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -225,10 +225,10 @@ impl MultiHeadAttention { }) } - fn forward(&self, x: &Tensor) -> Result { + fn forward(&self, x: &Tensor, xa: Option<&Tensor>) -> Result { let q = self.query.forward(x)?; - let k = self.key.forward(x)?; - let v = self.value.forward(x)?; + let k = self.key.forward(xa.unwrap_or(x))?; + let v = self.value.forward(xa.unwrap_or(x))?; let wv = self.qkv_attention(&q, &k, &v)?; let out = self.out.forward(&wv)?; Ok(out) @@ -286,16 +286,16 @@ impl ResidualAttentionBlock { }) } - fn forward(&self, x: &Tensor) -> Result { - let attn = self.attn.forward(&self.attn_ln.forward(x)?)?; + fn forward(&self, x: &Tensor, xa: Option<&Tensor>) -> Result { + let attn = self.attn.forward(&self.attn_ln.forward(x)?, None)?; let mut x = (x + attn)?; // Cross-Attn - if let Some(cross_attn) = &self.cross_attn { - x = cross_attn.forward(&x)? - } if let Some(cross_attn_ln) = &self.cross_attn_ln { x = cross_attn_ln.forward(&x)? } + if let Some(cross_attn) = &self.cross_attn { + x = cross_attn.forward(&x, xa)? + } // Mlp let mlp = self.mlp_linear2.forward( &self @@ -358,7 +358,7 @@ impl AudioEncoder { let x = x.transpose(1, 2)?; let mut x = x.broadcast_add(&self.positional_embedding)?; for block in self.blocks.iter() { - x = block.forward(&x)? + x = block.forward(&x, None)? } let x = self.ln_post.forward(&x)?; Ok(x) @@ -368,6 +368,7 @@ impl AudioEncoder { // https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L176 struct TextDecoder { token_embedding: Embedding, + positional_embedding: Tensor, blocks: Vec, ln: LayerNorm, mask: Tensor, @@ -377,8 +378,11 @@ impl TextDecoder { fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result { let n_state = cfg.n_text_state; let n_head = cfg.n_text_head; + let n_ctx = cfg.n_text_ctx; let token_embedding = Embedding::load(cfg.n_vocab, n_state, &format!("{p}.token_embedding"), vb)?; + let positional_embedding = + vb.get((n_ctx, n_state), &format!("{p}.positional_embedding"))?; let blocks = (0..cfg.n_text_layer) .map(|i| { ResidualAttentionBlock::load(n_state, n_head, false, &format!("{p}.blocks.{i}"), vb) @@ -388,13 +392,24 @@ impl TextDecoder { let mask = Tensor::new(&[0u32], &vb.device)?; // TODO Ok(Self { token_embedding, + positional_embedding, blocks, ln, mask, }) } - fn forward(&self, _tokens: &Tensor, _enc: &Tensor) -> Result { - todo!() + fn forward(&self, x: &Tensor, xa: &Tensor) -> Result { + let x_dims = x.dims(); + let last = x_dims[x_dims.len() - 1]; + let token_embedding = self.token_embedding.forward(x)?; + let positional_embedding = self.positional_embedding.narrow(0, 0, last)?; + let mut x = (token_embedding + positional_embedding)?; + for block in self.blocks.iter() { + x = block.forward(&x, Some(xa))? + } + let x = self.ln.forward(&x)?; + let logits = x.matmul(&self.token_embedding.embeddings.t()?)?; + Ok(logits) } } From d71b31144d286df98d2ae12bde66976794f33640 Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 09:29:19 +0100 Subject: [PATCH 07/36] Add a weight extraction script. --- .../examples/whisper/extract_weights.py | 13 +++++++++++++ candle-examples/examples/whisper/main.rs | 17 +++++++++++++++++ 2 files changed, 30 insertions(+) create mode 100644 candle-examples/examples/whisper/extract_weights.py diff --git a/candle-examples/examples/whisper/extract_weights.py b/candle-examples/examples/whisper/extract_weights.py new file mode 100644 index 00000000..d6ccffc6 --- /dev/null +++ b/candle-examples/examples/whisper/extract_weights.py @@ -0,0 +1,13 @@ +# Get the checkpoint from +# https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt + +import torch +from safetensors.torch import save_file + +data = torch.load("tiny.en.pt") +weights = {} +for k, v in data["model_state_dict"].items(): + weights[k] = v.contiguous() + print(k, v.shape) +save_file(weights, "tiny.en.safetensors") +print(data["dims"]) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 129c73b8..dac6df84 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -96,6 +96,23 @@ struct Config { n_text_layer: usize, } +impl Config { + fn tiny() -> Self { + Self { + n_mels: 80, + n_vocab: 51864, + n_audio_ctx: 1500, + n_audio_state: 384, + n_audio_head: 6, + n_audio_layer: 4, + n_text_ctx: 448, + n_text_state: 384, + n_text_head: 6, + n_text_layer: 4, + } + } +} + struct Embedding { embeddings: Tensor, hidden_size: usize, From e6b01d0c18d27b2363f5aad7a19da38afc51f7d1 Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 10:01:05 +0100 Subject: [PATCH 08/36] Add the conv1d layer (but not the op). --- candle-examples/examples/whisper/main.rs | 89 ++++++++++++++++++++++-- 1 file changed, 85 insertions(+), 4 deletions(-) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index dac6df84..75ab2189 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -172,6 +172,79 @@ impl Linear { } } +#[derive(Debug, Clone, Copy, PartialEq, Eq)] +struct ConvConfig { + padding: usize, + stride: usize, +} + +impl Default for ConvConfig { + fn default() -> Self { + Self { + padding: 0, + stride: 1, + } + } +} + +struct Conv1D { + weight: Tensor, + bias: Option, + config: ConvConfig, +} + +impl Conv1D { + fn load( + in_channels: usize, + out_channels: usize, + kernel_size: usize, + config: ConvConfig, + p: &str, + vb: &VarBuilder, + ) -> Result { + let weight = vb.get( + (out_channels, in_channels, kernel_size), + &format!("{p}.weight"), + )?; + let bias = vb.get(out_channels, &format!("{p}.bias"))?; + Ok(Self { + weight, + bias: Some(bias), + config, + }) + } + + fn load_no_bias( + in_channels: usize, + out_channels: usize, + kernel_size: usize, + config: ConvConfig, + p: &str, + vb: &VarBuilder, + ) -> Result { + let weight = vb.get( + (out_channels, in_channels, kernel_size), + &format!("{p}.weight"), + )?; + Ok(Self { + weight, + bias: None, + config, + }) + } + + fn forward(&self, x: &Tensor) -> candle::Result { + let (bsize, _, _) = x.shape().r3()?; + let w = self.weight.broadcast_left(bsize)?.t()?; + // TODO: Add the conv1d operation + let x = x.matmul(&w)?; + match &self.bias { + None => Ok(x), + Some(bias) => x.broadcast_add(bias), + } + } +} + struct Dropout { pr: f64, } @@ -341,8 +414,8 @@ fn sinusoids(length: usize, channels: usize) -> Result { // https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143 struct AudioEncoder { - conv1: Linear, // TODO - conv2: Linear, // TODO + conv1: Conv1D, + conv2: Conv1D, positional_embedding: Tensor, blocks: Vec, ln_post: LayerNorm, @@ -352,8 +425,16 @@ impl AudioEncoder { fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result { let n_state = cfg.n_audio_state; let n_head = cfg.n_audio_head; - let conv1 = Linear::load(cfg.n_mels, n_state, &format!("{p}.conv1"), vb)?; - let conv2 = Linear::load(n_state, n_state, &format!("{p}.conv2"), vb)?; + let cfg1 = ConvConfig { + padding: 1, + stride: 1, + }; + let cfg2 = ConvConfig { + padding: 1, + stride: 2, + }; + let conv1 = Conv1D::load(cfg.n_mels, n_state, 3, cfg1, &format!("{p}.conv1"), vb)?; + let conv2 = Conv1D::load(n_state, n_state, 3, cfg2, &format!("{p}.conv2"), vb)?; let positional_embedding = sinusoids(cfg.n_audio_ctx, n_state)?.to_device(&vb.device)?; let blocks = (0..cfg.n_audio_layer) .map(|i| { From 3aac1047fec43a4d756ae4e60a8ae82f7c3e636e Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 10:52:34 +0100 Subject: [PATCH 09/36] Sketch the conv1d op. --- candle-core/src/backprop.rs | 8 +++++++- candle-core/src/cpu_backend.rs | 11 +++++++++++ candle-core/src/cuda_backend.rs | 11 +++++++++++ candle-core/src/dummy_cuda_backend.rs | 11 +++++++++++ candle-core/src/op.rs | 8 ++++++++ candle-core/src/storage.rs | 27 +++++++++++++++++++++++++++ candle-core/src/tensor.rs | 22 ++++++++++++++++++++++ 7 files changed, 97 insertions(+), 1 deletion(-) diff --git a/candle-core/src/backprop.rs b/candle-core/src/backprop.rs index 45448505..a44f732f 100644 --- a/candle-core/src/backprop.rs +++ b/candle-core/src/backprop.rs @@ -33,7 +33,12 @@ impl Tensor { track_grad |= tg; nodes } - Op::Add(lhs, rhs) + Op::Conv1D { + arg: lhs, + kernel: rhs, + .. + } + | Op::Add(lhs, rhs) | Op::Mul(lhs, rhs) | Op::Sub(lhs, rhs) | Op::Div(lhs, rhs) @@ -147,6 +152,7 @@ impl Tensor { let f_grad = pred.where_cond(&zeros, &grad)?; *f_sum_grad = f_sum_grad.add(&f_grad)?; } + Op::Conv1D { .. } => return Err(Error::BackwardNotSupported { op: "conv1d" }), Op::Embedding(_lhs, _rhs) => { return Err(Error::BackwardNotSupported { op: "embedding" }) } diff --git a/candle-core/src/cpu_backend.rs b/candle-core/src/cpu_backend.rs index 0871175f..ed3a5998 100644 --- a/candle-core/src/cpu_backend.rs +++ b/candle-core/src/cpu_backend.rs @@ -627,6 +627,17 @@ impl CpuStorage { WCond(pred, layout).map(t, t_l, f, f_l) } + pub(crate) fn conv1d( + &self, + _l: &Layout, + _kernel: &Self, + _kernel_l: &Layout, + _padding: usize, + _stride: usize, + ) -> Result { + todo!() + } + pub(crate) fn embedding(&self, ids_l: &Layout, rhs: &Self, rhs_l: &Layout) -> Result { let ids = self.as_slice::()?; let (vocab_size, hidden_size) = rhs_l.shape().r2()?; diff --git a/candle-core/src/cuda_backend.rs b/candle-core/src/cuda_backend.rs index 0c87004b..ec69688c 100644 --- a/candle-core/src/cuda_backend.rs +++ b/candle-core/src/cuda_backend.rs @@ -801,6 +801,17 @@ impl CudaStorage { Ok(Self { slice, device }) } + pub(crate) fn conv1d( + &self, + _l: &Layout, + _kernel: &Self, + _kernel_l: &Layout, + _padding: usize, + _stride: usize, + ) -> Result { + todo!() + } + pub(crate) fn embedding(&self, layout: &Layout, rhs: &Self, rhs_l: &Layout) -> Result { let device = self.device().clone(); let slice = Embedding(self, layout).map(&rhs.slice, &device, rhs_l)?; diff --git a/candle-core/src/dummy_cuda_backend.rs b/candle-core/src/dummy_cuda_backend.rs index b025eeab..eca5961b 100644 --- a/candle-core/src/dummy_cuda_backend.rs +++ b/candle-core/src/dummy_cuda_backend.rs @@ -100,6 +100,17 @@ impl CudaStorage { Err(Error::NotCompiledWithCudaSupport) } + pub(crate) fn conv1d( + &self, + _l: &Layout, + _kernel: &Self, + _kernel_l: &Layout, + _padding: usize, + _stride: usize, + ) -> Result { + Err(Error::NotCompiledWithCudaSupport) + } + pub(crate) fn embedding(&self, _: &Layout, _: &Self, _: &Layout) -> Result { Err(Error::NotCompiledWithCudaSupport) } diff --git a/candle-core/src/op.rs b/candle-core/src/op.rs index 860be0b3..ee57b325 100644 --- a/candle-core/src/op.rs +++ b/candle-core/src/op.rs @@ -12,6 +12,14 @@ pub(crate) enum Op { Embedding(Tensor, Tensor), WhereCond(Tensor, Tensor, Tensor), + #[allow(dead_code)] + Conv1D { + arg: Tensor, + kernel: Tensor, + padding: usize, + stride: usize, + }, + Cat(Vec, usize), #[allow(dead_code)] // add is currently unused. diff --git a/candle-core/src/storage.rs b/candle-core/src/storage.rs index 4e630a58..235080c0 100644 --- a/candle-core/src/storage.rs +++ b/candle-core/src/storage.rs @@ -144,6 +144,33 @@ impl Storage { } } + pub(crate) fn conv1d( + &self, + l: &Layout, + kernel: &Self, + kernel_l: &Layout, + padding: usize, + stride: usize, + ) -> Result { + self.same_device(kernel, "conv1d")?; + self.same_dtype(kernel, "conv1d")?; + match (self, &kernel) { + (Storage::Cpu(inp), Storage::Cpu(kernel)) => { + let s = inp.conv1d(l, kernel, kernel_l, padding, stride)?; + Ok(Self::Cpu(s)) + } + (Storage::Cuda(inp), Storage::Cuda(kernel)) => { + let s = inp.conv1d(l, kernel, kernel_l, padding, stride)?; + Ok(Self::Cuda(s)) + } + (lhs, rhs) => Err(Error::DeviceMismatchBinaryOp { + lhs: lhs.device().location(), + rhs: rhs.device().location(), + op: "conv1d", + }), + } + } + pub(crate) fn where_cond( &self, layout: &Layout, diff --git a/candle-core/src/tensor.rs b/candle-core/src/tensor.rs index a468d879..26d44718 100644 --- a/candle-core/src/tensor.rs +++ b/candle-core/src/tensor.rs @@ -432,6 +432,28 @@ impl Tensor { Ok(from_storage(storage, dims, op, false)) } + pub fn conv1d(&self, kernel: &Self, padding: usize, stride: usize) -> Result { + let storage = self.storage.conv1d( + self.layout(), + &kernel.storage, + kernel.layout(), + padding, + stride, + )?; + let op = if self.track_op() || kernel.track_op() { + Some(Op::Conv1D { + arg: self.clone(), + kernel: kernel.clone(), + padding, + stride, + }) + } else { + None + }; + let dims = self.dims(); + Ok(from_storage(storage, dims, op, false)) + } + pub fn matmul(&self, rhs: &Self) -> Result { let a_dims = self.shape().dims(); let b_dims = rhs.shape().dims(); From a424d95473ea9268ffb1dde4d73ce0cff9904845 Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 11:15:45 +0100 Subject: [PATCH 10/36] Add more of the conv1d op. --- candle-core/src/conv.rs | 24 +++++++++++++++++++++ candle-core/src/cpu_backend.rs | 3 +-- candle-core/src/cuda_backend.rs | 3 +-- candle-core/src/dummy_cuda_backend.rs | 3 +-- candle-core/src/lib.rs | 1 + candle-core/src/storage.rs | 7 +++--- candle-core/src/tensor.rs | 27 ++++++++++++++++++------ candle-examples/examples/whisper/main.rs | 3 +-- 8 files changed, 52 insertions(+), 19 deletions(-) create mode 100644 candle-core/src/conv.rs diff --git a/candle-core/src/conv.rs b/candle-core/src/conv.rs new file mode 100644 index 00000000..90bb5229 --- /dev/null +++ b/candle-core/src/conv.rs @@ -0,0 +1,24 @@ +#[derive(Debug, Clone, PartialEq, Eq)] +pub(crate) struct ParamsConv1D { + pub(crate) b_size: Option, + pub(crate) c_out: usize, + pub(crate) c_in: usize, + pub(crate) k_size: usize, + pub(crate) padding: usize, + pub(crate) stride: usize, +} + +impl ParamsConv1D { + pub(crate) fn l_out(&self, l_in: usize) -> usize { + let dilation = 1; + (l_in + 2 * self.padding - dilation * (self.k_size - 1) - 1) / self.stride + 1 + } + + pub(crate) fn out_dims(&self, l_in: usize) -> Vec { + let l_out = self.l_out(l_in); + match self.b_size { + None => vec![self.c_out, l_out], + Some(n) => vec![n, self.c_out, l_out], + } + } +} diff --git a/candle-core/src/cpu_backend.rs b/candle-core/src/cpu_backend.rs index ed3a5998..54002184 100644 --- a/candle-core/src/cpu_backend.rs +++ b/candle-core/src/cpu_backend.rs @@ -632,8 +632,7 @@ impl CpuStorage { _l: &Layout, _kernel: &Self, _kernel_l: &Layout, - _padding: usize, - _stride: usize, + _params: &crate::conv::ParamsConv1D, ) -> Result { todo!() } diff --git a/candle-core/src/cuda_backend.rs b/candle-core/src/cuda_backend.rs index ec69688c..917655fc 100644 --- a/candle-core/src/cuda_backend.rs +++ b/candle-core/src/cuda_backend.rs @@ -806,8 +806,7 @@ impl CudaStorage { _l: &Layout, _kernel: &Self, _kernel_l: &Layout, - _padding: usize, - _stride: usize, + _params: &crate::conv::ParamsConv1D, ) -> Result { todo!() } diff --git a/candle-core/src/dummy_cuda_backend.rs b/candle-core/src/dummy_cuda_backend.rs index eca5961b..0dbd8d54 100644 --- a/candle-core/src/dummy_cuda_backend.rs +++ b/candle-core/src/dummy_cuda_backend.rs @@ -105,8 +105,7 @@ impl CudaStorage { _l: &Layout, _kernel: &Self, _kernel_l: &Layout, - _padding: usize, - _stride: usize, + _params: &crate::conv::ParamsConv1D, ) -> Result { Err(Error::NotCompiledWithCudaSupport) } diff --git a/candle-core/src/lib.rs b/candle-core/src/lib.rs index 0d4c2a8d..2365a34d 100644 --- a/candle-core/src/lib.rs +++ b/candle-core/src/lib.rs @@ -1,4 +1,5 @@ mod backprop; +mod conv; mod cpu_backend; #[cfg(feature = "cuda")] mod cuda_backend; diff --git a/candle-core/src/storage.rs b/candle-core/src/storage.rs index 235080c0..53ea1544 100644 --- a/candle-core/src/storage.rs +++ b/candle-core/src/storage.rs @@ -149,18 +149,17 @@ impl Storage { l: &Layout, kernel: &Self, kernel_l: &Layout, - padding: usize, - stride: usize, + params: &crate::conv::ParamsConv1D, ) -> Result { self.same_device(kernel, "conv1d")?; self.same_dtype(kernel, "conv1d")?; match (self, &kernel) { (Storage::Cpu(inp), Storage::Cpu(kernel)) => { - let s = inp.conv1d(l, kernel, kernel_l, padding, stride)?; + let s = inp.conv1d(l, kernel, kernel_l, params)?; Ok(Self::Cpu(s)) } (Storage::Cuda(inp), Storage::Cuda(kernel)) => { - let s = inp.conv1d(l, kernel, kernel_l, padding, stride)?; + let s = inp.conv1d(l, kernel, kernel_l, params)?; Ok(Self::Cuda(s)) } (lhs, rhs) => Err(Error::DeviceMismatchBinaryOp { diff --git a/candle-core/src/tensor.rs b/candle-core/src/tensor.rs index 26d44718..590b81c4 100644 --- a/candle-core/src/tensor.rs +++ b/candle-core/src/tensor.rs @@ -433,13 +433,26 @@ impl Tensor { } pub fn conv1d(&self, kernel: &Self, padding: usize, stride: usize) -> Result { - let storage = self.storage.conv1d( - self.layout(), - &kernel.storage, - kernel.layout(), + let (c_out, c_in_k, k_size) = kernel.shape().r3()?; + let (b_size, c_in, l_in) = match *self.dims() { + [b_size, c_in, l_in] => (Some(b_size), c_in, l_in), + [c_in, l_in] => (None, c_in, l_in), + _ => todo!("proper error message"), + }; + if c_in != c_in_k { + todo!("proper error message") + } + let params = crate::conv::ParamsConv1D { + b_size, + c_out, + c_in, + k_size, padding, stride, - )?; + }; + let storage = + self.storage + .conv1d(self.layout(), &kernel.storage, kernel.layout(), ¶ms)?; let op = if self.track_op() || kernel.track_op() { Some(Op::Conv1D { arg: self.clone(), @@ -450,8 +463,8 @@ impl Tensor { } else { None }; - let dims = self.dims(); - Ok(from_storage(storage, dims, op, false)) + let out_dims = params.out_dims(l_in); + Ok(from_storage(storage, out_dims, op, false)) } pub fn matmul(&self, rhs: &Self) -> Result { diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 75ab2189..a380d30e 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -236,8 +236,7 @@ impl Conv1D { fn forward(&self, x: &Tensor) -> candle::Result { let (bsize, _, _) = x.shape().r3()?; let w = self.weight.broadcast_left(bsize)?.t()?; - // TODO: Add the conv1d operation - let x = x.matmul(&w)?; + let x = x.conv1d(&w, self.config.padding, self.config.stride)?; match &self.bias { None => Ok(x), Some(bias) => x.broadcast_add(bias), From 950b4af49e56b640b87eb273e839b2fd466e1424 Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 11:29:28 +0100 Subject: [PATCH 11/36] Proper conv1d dispatch. --- candle-core/src/conv.rs | 11 +++++++---- candle-core/src/cpu_backend.rs | 30 +++++++++++++++++++++++++----- candle-core/src/tensor.rs | 3 ++- 3 files changed, 34 insertions(+), 10 deletions(-) diff --git a/candle-core/src/conv.rs b/candle-core/src/conv.rs index 90bb5229..041bb6fb 100644 --- a/candle-core/src/conv.rs +++ b/candle-core/src/conv.rs @@ -1,6 +1,9 @@ #[derive(Debug, Clone, PartialEq, Eq)] pub(crate) struct ParamsConv1D { pub(crate) b_size: Option, + // Maybe we should have a version without l_in as this bit depends on the input and not only on + // the weights. + pub(crate) l_in: usize, pub(crate) c_out: usize, pub(crate) c_in: usize, pub(crate) k_size: usize, @@ -9,13 +12,13 @@ pub(crate) struct ParamsConv1D { } impl ParamsConv1D { - pub(crate) fn l_out(&self, l_in: usize) -> usize { + pub(crate) fn l_out(&self) -> usize { let dilation = 1; - (l_in + 2 * self.padding - dilation * (self.k_size - 1) - 1) / self.stride + 1 + (self.l_in + 2 * self.padding - dilation * (self.k_size - 1) - 1) / self.stride + 1 } - pub(crate) fn out_dims(&self, l_in: usize) -> Vec { - let l_out = self.l_out(l_in); + pub(crate) fn out_dims(&self) -> Vec { + let l_out = self.l_out(); match self.b_size { None => vec![self.c_out, l_out], Some(n) => vec![n, self.c_out, l_out], diff --git a/candle-core/src/cpu_backend.rs b/candle-core/src/cpu_backend.rs index 54002184..718b071c 100644 --- a/candle-core/src/cpu_backend.rs +++ b/candle-core/src/cpu_backend.rs @@ -202,6 +202,26 @@ fn copy_strided_src_( } } +struct Conv1D<'a>(&'a crate::conv::ParamsConv1D); + +impl<'a> Map2 for Conv1D<'a> { + const OP: &'static str = "conv1d"; + fn f( + &self, + _inp: &[T], + _inp_l: &Layout, + _k: &[T], + _k_l: &Layout, + ) -> Result> { + let p = self.0; + let l_out = p.l_out(); + let out_elems = p.c_out * l_out * p.b_size.unwrap_or(1); + let dst = vec![T::zero(); out_elems]; + // TODO: actually implement the ops. + Ok(dst) + } +} + struct MatMul((usize, usize, usize, usize)); impl Map2 for MatMul { @@ -629,12 +649,12 @@ impl CpuStorage { pub(crate) fn conv1d( &self, - _l: &Layout, - _kernel: &Self, - _kernel_l: &Layout, - _params: &crate::conv::ParamsConv1D, + l: &Layout, + kernel: &Self, + kernel_l: &Layout, + params: &crate::conv::ParamsConv1D, ) -> Result { - todo!() + Conv1D(params).map(self, l, kernel, kernel_l) } pub(crate) fn embedding(&self, ids_l: &Layout, rhs: &Self, rhs_l: &Layout) -> Result { diff --git a/candle-core/src/tensor.rs b/candle-core/src/tensor.rs index 590b81c4..25ab0a9b 100644 --- a/candle-core/src/tensor.rs +++ b/candle-core/src/tensor.rs @@ -444,6 +444,7 @@ impl Tensor { } let params = crate::conv::ParamsConv1D { b_size, + l_in, c_out, c_in, k_size, @@ -463,7 +464,7 @@ impl Tensor { } else { None }; - let out_dims = params.out_dims(l_in); + let out_dims = params.out_dims(); Ok(from_storage(storage, out_dims, op, false)) } From aea090401ded5789e95f1f8efb7404a66b508356 Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 12:03:28 +0100 Subject: [PATCH 12/36] Run the text decoding bit. --- .../examples/whisper/extract_weights.py | 2 +- candle-examples/examples/whisper/main.rs | 39 +++++++++++-------- 2 files changed, 24 insertions(+), 17 deletions(-) diff --git a/candle-examples/examples/whisper/extract_weights.py b/candle-examples/examples/whisper/extract_weights.py index d6ccffc6..65602703 100644 --- a/candle-examples/examples/whisper/extract_weights.py +++ b/candle-examples/examples/whisper/extract_weights.py @@ -8,6 +8,6 @@ data = torch.load("tiny.en.pt") weights = {} for k, v in data["model_state_dict"].items(): weights[k] = v.contiguous() - print(k, v.shape) + print(k, v.shape, v.dtype) save_file(weights, "tiny.en.safetensors") print(data["dims"]) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index a380d30e..c3a2769f 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -3,7 +3,7 @@ // TODO: // - kv-cache support? -use anyhow::{Error as E, Result}; +use anyhow::Result; use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor}; use clap::Parser; use std::collections::HashMap; @@ -97,7 +97,7 @@ struct Config { } impl Config { - fn tiny() -> Self { + fn tiny_en() -> Self { Self { n_mels: 80, n_vocab: 51864, @@ -302,8 +302,8 @@ struct MultiHeadAttention { impl MultiHeadAttention { fn load(n_state: usize, n_head: usize, p: &str, vb: &VarBuilder) -> Result { let query = Linear::load(n_state, n_state, &format!("{p}.query"), vb)?; - let value = Linear::load_no_bias(n_state, n_state, &format!("{p}.value"), vb)?; - let key = Linear::load(n_state, n_state, &format!("{p}.key"), vb)?; + let value = Linear::load(n_state, n_state, &format!("{p}.value"), vb)?; + let key = Linear::load_no_bias(n_state, n_state, &format!("{p}.key"), vb)?; let out = Linear::load(n_state, n_state, &format!("{p}.out"), vb)?; Ok(Self { query, @@ -500,12 +500,13 @@ impl TextDecoder { let last = x_dims[x_dims.len() - 1]; let token_embedding = self.token_embedding.forward(x)?; let positional_embedding = self.positional_embedding.narrow(0, 0, last)?; - let mut x = (token_embedding + positional_embedding)?; + let mut x = token_embedding.broadcast_add(&positional_embedding)?; for block in self.blocks.iter() { x = block.forward(&x, Some(xa))? } let x = self.ln.forward(&x)?; - let logits = x.matmul(&self.token_embedding.embeddings.t()?)?; + let w = self.token_embedding.embeddings.broadcast_left(x_dims[0])?; + let logits = x.matmul(&w.t()?)?; Ok(logits) } } @@ -517,9 +518,9 @@ struct Whisper { } impl Whisper { - fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result { - let encoder = AudioEncoder::load(&format!("{p}.encoder"), vb, cfg)?; - let decoder = TextDecoder::load(&format!("{p}.decoder"), vb, cfg)?; + fn load(vb: &VarBuilder, cfg: &Config) -> Result { + let encoder = AudioEncoder::load("encoder", vb, cfg)?; + let decoder = TextDecoder::load("decoder", vb, cfg)?; Ok(Self { encoder, decoder }) } fn forward(&self, mel: &Tensor, tokens: &Tensor) -> Result { @@ -537,15 +538,13 @@ struct Args { cpu: bool, #[arg(long)] - tokenizer_config: String, + weights: String, #[arg(long)] - weights: String, + input: String, } fn main() -> Result<()> { - use tokenizers::Tokenizer; - let args = Args::parse(); let device = if args.cpu { Device::Cpu @@ -553,11 +552,19 @@ fn main() -> Result<()> { Device::new_cuda(0)? }; - let mut tokenizer = Tokenizer::from_file(args.tokenizer_config).map_err(E::msg)?; - let _tokenizer = tokenizer.with_padding(None).with_truncation(None); + let input = unsafe { candle::safetensors::MmapedFile::new(args.input)? }; + let input = input.deserialize()?; + let x = input.tensor("x", &device)?.to_dtype(DType::U32)?; + let xa = input.tensor("xa", &device)?; let weights = unsafe { candle::safetensors::MmapedFile::new(args.weights)? }; let weights = weights.deserialize()?; - let _vb = VarBuilder::from_safetensors(vec![weights], DTYPE, device); + let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, device.clone()); + let cfg = Config::tiny_en(); + + let model = Whisper::load(&vb, &cfg)?; + let logits = model.decoder.forward(&x, &xa)?; + println!("{logits}"); + println!("python logits: {}", input.tensor("logits", &device)?); Ok(()) } From 0d99b4379224838265bf9bedd836dd655b94a001 Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 12:27:05 +0100 Subject: [PATCH 13/36] Line up the textdecoder values with the python implementation. --- candle-examples/examples/whisper/main.rs | 36 ++++++++++++------------ 1 file changed, 18 insertions(+), 18 deletions(-) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index c3a2769f..6341c5ee 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -323,13 +323,18 @@ impl MultiHeadAttention { Ok(out) } - fn qkv_attention(&self, q: &Tensor, k: &Tensor, v: &Tensor) -> Result { - let (n_batch, n_ctx, n_state) = q.shape().r3()?; + fn reshape_head(&self, x: &Tensor) -> Result { + let (n_batch, n_ctx, n_state) = x.shape().r3()?; let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head]; + Ok(x.reshape(target_dims)?.transpose(1, 2)?) + } + + fn qkv_attention(&self, q: &Tensor, k: &Tensor, v: &Tensor) -> Result { + let (_, _, n_state) = q.shape().r3()?; let scale = ((n_state / self.n_head) as f64).powf(-0.25); - let q = (q.reshape(target_dims)?.transpose(1, 2)? * scale)?; - let k = (k.reshape(target_dims)?.transpose(1, 2)?.transpose(2, 3)? * scale)?; - let v = v.reshape(target_dims)?.transpose(1, 2)?; + let q = (self.reshape_head(q)? * scale)?; + let k = (self.reshape_head(k)?.transpose(2, 3)? * scale)?; + let v = self.reshape_head(v)?.contiguous()?; let qk = q.matmul(&k)?; let w = qk.softmax(qk.rank() - 1)?; let wv = w.matmul(&v)?.transpose(1, 2)?.flatten(Some(2), None)?; @@ -341,8 +346,7 @@ impl MultiHeadAttention { struct ResidualAttentionBlock { attn: MultiHeadAttention, attn_ln: LayerNorm, - cross_attn: Option, - cross_attn_ln: Option, + cross_attn: Option<(MultiHeadAttention, LayerNorm)>, mlp_linear1: Linear, mlp_linear2: Linear, mlp_ln: LayerNorm, @@ -352,13 +356,13 @@ impl ResidualAttentionBlock { fn load(n_state: usize, n_head: usize, ca: bool, p: &str, vb: &VarBuilder) -> Result { let attn = MultiHeadAttention::load(n_state, n_head, &format!("{p}.attn"), vb)?; let attn_ln = LayerNorm::load(n_state, &format!("{p}.attn_ln"), vb)?; - let (cross_attn, cross_attn_ln) = if ca { + let cross_attn = if ca { let cross_attn = MultiHeadAttention::load(n_state, n_head, &format!("{p}.cross_attn"), vb)?; let cross_attn_ln = LayerNorm::load(n_state, &format!("{p}.cross_attn_ln"), vb)?; - (Some(cross_attn), Some(cross_attn_ln)) + Some((cross_attn, cross_attn_ln)) } else { - (None, None) + None }; let n_mlp = n_state * 4; let mlp_linear1 = Linear::load(n_state, n_mlp, &format!("{p}.mlp.0"), vb)?; @@ -368,7 +372,6 @@ impl ResidualAttentionBlock { attn, attn_ln, cross_attn, - cross_attn_ln, mlp_linear1, mlp_linear2, mlp_ln, @@ -379,11 +382,8 @@ impl ResidualAttentionBlock { let attn = self.attn.forward(&self.attn_ln.forward(x)?, None)?; let mut x = (x + attn)?; // Cross-Attn - if let Some(cross_attn_ln) = &self.cross_attn_ln { - x = cross_attn_ln.forward(&x)? - } - if let Some(cross_attn) = &self.cross_attn { - x = cross_attn.forward(&x, xa)? + if let Some((attn, ln)) = &self.cross_attn { + x = (&x + attn.forward(&ln.forward(&x)?, xa)?)?; } // Mlp let mlp = self.mlp_linear2.forward( @@ -482,7 +482,7 @@ impl TextDecoder { vb.get((n_ctx, n_state), &format!("{p}.positional_embedding"))?; let blocks = (0..cfg.n_text_layer) .map(|i| { - ResidualAttentionBlock::load(n_state, n_head, false, &format!("{p}.blocks.{i}"), vb) + ResidualAttentionBlock::load(n_state, n_head, true, &format!("{p}.blocks.{i}"), vb) }) .collect::>>()?; let ln = LayerNorm::load(n_state, &format!("{p}.ln"), vb)?; @@ -502,7 +502,7 @@ impl TextDecoder { let positional_embedding = self.positional_embedding.narrow(0, 0, last)?; let mut x = token_embedding.broadcast_add(&positional_embedding)?; for block in self.blocks.iter() { - x = block.forward(&x, Some(xa))? + x = block.forward(&x, Some(xa))?; } let x = self.ln.forward(&x)?; let w = self.token_embedding.embeddings.broadcast_left(x_dims[0])?; From 599160605c0294c94c33f64aeca0ac9f388d03c7 Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 13:13:28 +0100 Subject: [PATCH 14/36] Use the stored embeddings. --- candle-examples/examples/whisper/main.rs | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 6341c5ee..1b6f4bfe 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -424,6 +424,7 @@ impl AudioEncoder { fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result { let n_state = cfg.n_audio_state; let n_head = cfg.n_audio_head; + let n_ctx = cfg.n_audio_ctx; let cfg1 = ConvConfig { padding: 1, stride: 1, @@ -434,7 +435,12 @@ impl AudioEncoder { }; let conv1 = Conv1D::load(cfg.n_mels, n_state, 3, cfg1, &format!("{p}.conv1"), vb)?; let conv2 = Conv1D::load(n_state, n_state, 3, cfg2, &format!("{p}.conv2"), vb)?; - let positional_embedding = sinusoids(cfg.n_audio_ctx, n_state)?.to_device(&vb.device)?; + /* The positional embeddings could be regenerated via the following. */ + let positional_embedding = if true { + vb.get((n_ctx, n_state), &format!("{p}.positional_embedding"))? + } else { + sinusoids(n_ctx, n_state)?.to_device(&vb.device)? + }; let blocks = (0..cfg.n_audio_layer) .map(|i| { ResidualAttentionBlock::load(n_state, n_head, false, &format!("{p}.blocks.{i}"), vb) From 99b83773b51382915c94bd3b2298522036235f72 Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 13:21:59 +0100 Subject: [PATCH 15/36] Small cleanup. --- candle-examples/examples/whisper/main.rs | 5 +---- 1 file changed, 1 insertion(+), 4 deletions(-) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 1b6f4bfe..71b03e72 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -435,10 +435,10 @@ impl AudioEncoder { }; let conv1 = Conv1D::load(cfg.n_mels, n_state, 3, cfg1, &format!("{p}.conv1"), vb)?; let conv2 = Conv1D::load(n_state, n_state, 3, cfg2, &format!("{p}.conv2"), vb)?; - /* The positional embeddings could be regenerated via the following. */ let positional_embedding = if true { vb.get((n_ctx, n_state), &format!("{p}.positional_embedding"))? } else { + /* The positional embeddings could be regenerated via the following. */ sinusoids(n_ctx, n_state)?.to_device(&vb.device)? }; let blocks = (0..cfg.n_audio_layer) @@ -474,7 +474,6 @@ struct TextDecoder { positional_embedding: Tensor, blocks: Vec, ln: LayerNorm, - mask: Tensor, } impl TextDecoder { @@ -492,13 +491,11 @@ impl TextDecoder { }) .collect::>>()?; let ln = LayerNorm::load(n_state, &format!("{p}.ln"), vb)?; - let mask = Tensor::new(&[0u32], &vb.device)?; // TODO Ok(Self { token_embedding, positional_embedding, blocks, ln, - mask, }) } fn forward(&self, x: &Tensor, xa: &Tensor) -> Result { From b3d4d0fd0f7c0115cf5c8cea60094abef5536e56 Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 13:50:41 +0100 Subject: [PATCH 16/36] Very inefficient conv1d implementation. --- candle-core/src/cpu_backend.rs | 53 +++++++++++++++++++++++++++++----- 1 file changed, 45 insertions(+), 8 deletions(-) diff --git a/candle-core/src/cpu_backend.rs b/candle-core/src/cpu_backend.rs index 718b071c..4eb57bc7 100644 --- a/candle-core/src/cpu_backend.rs +++ b/candle-core/src/cpu_backend.rs @@ -206,18 +206,55 @@ struct Conv1D<'a>(&'a crate::conv::ParamsConv1D); impl<'a> Map2 for Conv1D<'a> { const OP: &'static str = "conv1d"; - fn f( + fn f( &self, - _inp: &[T], - _inp_l: &Layout, - _k: &[T], - _k_l: &Layout, + inp: &[T], + inp_l: &Layout, + k: &[T], + k_l: &Layout, ) -> Result> { + // TODO: Optimize this (proper algorithm, simd, multithread, remove bound checks, etc). let p = self.0; + let inp = &inp[inp_l.start_offset()..]; + let k = &k[k_l.start_offset()..]; + let inp_stride = inp_l.stride(); + let (inp_stride0, inp_stride) = if inp_stride.len() == 3 { + (inp_stride[0], &inp_stride[1..]) + } else { + (0, inp_stride) // This value never gets used anyway + }; + let k_stride = k_l.stride(); + let k_over_2 = p.k_size / 2; let l_out = p.l_out(); - let out_elems = p.c_out * l_out * p.b_size.unwrap_or(1); - let dst = vec![T::zero(); out_elems]; - // TODO: actually implement the ops. + let dst_elems = p.c_out * l_out * p.b_size.unwrap_or(1); + let mut dst = vec![T::zero(); dst_elems]; + // The output shape is [b_size, c_out, l_out] + for b_idx in 0..p.b_size.unwrap_or(1) { + let inp_idx = b_idx * inp_stride0; + let dst_idx = b_idx * p.c_out * l_out; + for dst_c_idx in 0..p.c_out { + let dst_idx = dst_idx + dst_c_idx * l_out; + for dst_l in 0..l_out { + let dst_idx = dst_idx + dst_l; + let mut d = T::zero(); + for offset in 0..p.k_size { + // inp[bidx, src_c_idx, dst_l + offset - k//2] * k[dst_c_idx, src_c_idx, offset] + if k_over_2 <= dst_l + offset && dst_l + offset < k_over_2 + p.l_in { + let src_l = dst_l + offset - k_over_2; + for src_c_idx in 0..p.c_in { + let inp_idx = + inp_idx + src_c_idx * inp_stride[0] + src_l * inp_stride[1]; + let k_idx = dst_c_idx * k_stride[0] + + src_c_idx * k_stride[1] + + offset * k_stride[2]; + d += inp[inp_idx] * k[k_idx] + } + } + } + dst[dst_idx] = d + } + } + } Ok(dst) } } From c3739d001bfb1a1305fc1ff398761e380f87bfb1 Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 14:06:09 +0100 Subject: [PATCH 17/36] Get the audio-encoder to return some values. --- candle-examples/examples/whisper/main.rs | 22 +++++++++++----------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 71b03e72..839dfc13 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -233,13 +233,15 @@ impl Conv1D { }) } - fn forward(&self, x: &Tensor) -> candle::Result { - let (bsize, _, _) = x.shape().r3()?; - let w = self.weight.broadcast_left(bsize)?.t()?; - let x = x.conv1d(&w, self.config.padding, self.config.stride)?; + fn forward(&self, x: &Tensor) -> Result { + let x = x.conv1d(&self.weight, self.config.padding, self.config.stride)?; match &self.bias { None => Ok(x), - Some(bias) => x.broadcast_add(bias), + Some(bias) => { + let b = bias.shape().r1()?; + let bias = bias.reshape((1, b, 1))?; + Ok(x.broadcast_add(&bias)?) + } } } } @@ -381,11 +383,9 @@ impl ResidualAttentionBlock { fn forward(&self, x: &Tensor, xa: Option<&Tensor>) -> Result { let attn = self.attn.forward(&self.attn_ln.forward(x)?, None)?; let mut x = (x + attn)?; - // Cross-Attn if let Some((attn, ln)) = &self.cross_attn { x = (&x + attn.forward(&ln.forward(&x)?, xa)?)?; } - // Mlp let mlp = self.mlp_linear2.forward( &self .mlp_linear1 @@ -557,8 +557,8 @@ fn main() -> Result<()> { let input = unsafe { candle::safetensors::MmapedFile::new(args.input)? }; let input = input.deserialize()?; - let x = input.tensor("x", &device)?.to_dtype(DType::U32)?; - let xa = input.tensor("xa", &device)?; + let tokens = input.tensor("tokens", &device)?.to_dtype(DType::U32)?; + let mel = input.tensor("mel", &device)?; let weights = unsafe { candle::safetensors::MmapedFile::new(args.weights)? }; let weights = weights.deserialize()?; @@ -566,8 +566,8 @@ fn main() -> Result<()> { let cfg = Config::tiny_en(); let model = Whisper::load(&vb, &cfg)?; - let logits = model.decoder.forward(&x, &xa)?; + let logits = model.forward(&mel, &tokens)?; println!("{logits}"); - println!("python logits: {}", input.tensor("logits", &device)?); + println!("python logits: {}", input.tensor("dec", &device)?); Ok(()) } From 459e2e1ae34c624ae9f54aac5430f9ed7e1666f3 Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 15:05:04 +0100 Subject: [PATCH 18/36] Properly handle the stride in conv1d. --- candle-core/src/cpu_backend.rs | 5 +++-- candle-examples/examples/whisper/main.rs | 13 ++++++------- 2 files changed, 9 insertions(+), 9 deletions(-) diff --git a/candle-core/src/cpu_backend.rs b/candle-core/src/cpu_backend.rs index 4eb57bc7..b2345756 100644 --- a/candle-core/src/cpu_backend.rs +++ b/candle-core/src/cpu_backend.rs @@ -238,9 +238,10 @@ impl<'a> Map2 for Conv1D<'a> { let dst_idx = dst_idx + dst_l; let mut d = T::zero(); for offset in 0..p.k_size { + let src_l_plus = p.stride * dst_l + offset; // inp[bidx, src_c_idx, dst_l + offset - k//2] * k[dst_c_idx, src_c_idx, offset] - if k_over_2 <= dst_l + offset && dst_l + offset < k_over_2 + p.l_in { - let src_l = dst_l + offset - k_over_2; + if k_over_2 <= src_l_plus && src_l_plus < k_over_2 + p.l_in { + let src_l = src_l_plus - k_over_2; for src_c_idx in 0..p.c_in { let inp_idx = inp_idx + src_c_idx * inp_stride[0] + src_l * inp_stride[1]; diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 839dfc13..d119b6a7 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -435,12 +435,7 @@ impl AudioEncoder { }; let conv1 = Conv1D::load(cfg.n_mels, n_state, 3, cfg1, &format!("{p}.conv1"), vb)?; let conv2 = Conv1D::load(n_state, n_state, 3, cfg2, &format!("{p}.conv2"), vb)?; - let positional_embedding = if true { - vb.get((n_ctx, n_state), &format!("{p}.positional_embedding"))? - } else { - /* The positional embeddings could be regenerated via the following. */ - sinusoids(n_ctx, n_state)?.to_device(&vb.device)? - }; + let positional_embedding = sinusoids(n_ctx, n_state)?.to_device(&vb.device)?; let blocks = (0..cfg.n_audio_layer) .map(|i| { ResidualAttentionBlock::load(n_state, n_head, false, &format!("{p}.blocks.{i}"), vb) @@ -567,7 +562,11 @@ fn main() -> Result<()> { let model = Whisper::load(&vb, &cfg)?; let logits = model.forward(&mel, &tokens)?; - println!("{logits}"); + println!("tokens\n{tokens}"); + println!("logits:\n{logits}"); println!("python logits: {}", input.tensor("dec", &device)?); + let enc = model.encoder.forward(&mel)?; + println!("encoder:\n{enc}"); + println!("python enc: {}", input.tensor("enc", &device)?); Ok(()) } From 31663bc04f25a7432befb491893dbb691597c46f Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 15:25:47 +0100 Subject: [PATCH 19/36] Add the causal mask in text decoding. --- candle-examples/examples/whisper/main.rs | 37 +++++++++++++++++------- 1 file changed, 27 insertions(+), 10 deletions(-) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index d119b6a7..8f72fc19 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -316,11 +316,11 @@ impl MultiHeadAttention { }) } - fn forward(&self, x: &Tensor, xa: Option<&Tensor>) -> Result { + fn forward(&self, x: &Tensor, xa: Option<&Tensor>, mask: Option<&Tensor>) -> Result { let q = self.query.forward(x)?; let k = self.key.forward(xa.unwrap_or(x))?; let v = self.value.forward(xa.unwrap_or(x))?; - let wv = self.qkv_attention(&q, &k, &v)?; + let wv = self.qkv_attention(&q, &k, &v, mask)?; let out = self.out.forward(&wv)?; Ok(out) } @@ -331,13 +331,23 @@ impl MultiHeadAttention { Ok(x.reshape(target_dims)?.transpose(1, 2)?) } - fn qkv_attention(&self, q: &Tensor, k: &Tensor, v: &Tensor) -> Result { - let (_, _, n_state) = q.shape().r3()?; + fn qkv_attention( + &self, + q: &Tensor, + k: &Tensor, + v: &Tensor, + mask: Option<&Tensor>, + ) -> Result { + let (_, n_ctx, n_state) = q.shape().r3()?; let scale = ((n_state / self.n_head) as f64).powf(-0.25); let q = (self.reshape_head(q)? * scale)?; let k = (self.reshape_head(k)?.transpose(2, 3)? * scale)?; let v = self.reshape_head(v)?.contiguous()?; - let qk = q.matmul(&k)?; + let mut qk = q.matmul(&k)?; + if let Some(mask) = mask { + let mask = mask.narrow(0, 0, n_ctx)?.narrow(1, 0, n_ctx)?; + qk = qk.broadcast_add(&mask)? + } let w = qk.softmax(qk.rank() - 1)?; let wv = w.matmul(&v)?.transpose(1, 2)?.flatten(Some(2), None)?; Ok(wv) @@ -380,11 +390,11 @@ impl ResidualAttentionBlock { }) } - fn forward(&self, x: &Tensor, xa: Option<&Tensor>) -> Result { - let attn = self.attn.forward(&self.attn_ln.forward(x)?, None)?; + fn forward(&self, x: &Tensor, xa: Option<&Tensor>, mask: Option<&Tensor>) -> Result { + let attn = self.attn.forward(&self.attn_ln.forward(x)?, None, mask)?; let mut x = (x + attn)?; if let Some((attn, ln)) = &self.cross_attn { - x = (&x + attn.forward(&ln.forward(&x)?, xa)?)?; + x = (&x + attn.forward(&ln.forward(&x)?, xa, None)?)?; } let mlp = self.mlp_linear2.forward( &self @@ -456,7 +466,7 @@ impl AudioEncoder { let x = x.transpose(1, 2)?; let mut x = x.broadcast_add(&self.positional_embedding)?; for block in self.blocks.iter() { - x = block.forward(&x, None)? + x = block.forward(&x, None, None)? } let x = self.ln_post.forward(&x)?; Ok(x) @@ -469,6 +479,7 @@ struct TextDecoder { positional_embedding: Tensor, blocks: Vec, ln: LayerNorm, + mask: Tensor, } impl TextDecoder { @@ -486,11 +497,17 @@ impl TextDecoder { }) .collect::>>()?; let ln = LayerNorm::load(n_state, &format!("{p}.ln"), vb)?; + let mask: Vec<_> = (0..n_ctx) + .flat_map(|i| (0..n_ctx).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 })) + .collect(); + let mask = Tensor::from_vec(mask, (n_ctx, n_ctx), &vb.device)?; + Ok(Self { token_embedding, positional_embedding, blocks, ln, + mask, }) } fn forward(&self, x: &Tensor, xa: &Tensor) -> Result { @@ -500,7 +517,7 @@ impl TextDecoder { let positional_embedding = self.positional_embedding.narrow(0, 0, last)?; let mut x = token_embedding.broadcast_add(&positional_embedding)?; for block in self.blocks.iter() { - x = block.forward(&x, Some(xa))?; + x = block.forward(&x, Some(xa), Some(&self.mask))?; } let x = self.ln.forward(&x)?; let w = self.token_embedding.embeddings.broadcast_left(x_dims[0])?; From babf3b40653e6ad2b0adbd80e169c8a5dc8651bf Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 18:25:47 +0100 Subject: [PATCH 20/36] Sketch the decode step for whisper. --- candle-examples/examples/whisper/main.rs | 115 +++++++++++++++++++---- 1 file changed, 99 insertions(+), 16 deletions(-) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 8f72fc19..5b4ab4ce 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -2,14 +2,32 @@ // https://github.com/openai/whisper/blob/main/whisper/model.py // TODO: // - kv-cache support? +// - language detection? -use anyhow::Result; +use anyhow::{Error as E, Result}; use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor}; use clap::Parser; use std::collections::HashMap; const DTYPE: DType = DType::F32; +// Audio parameters. +const SAMPLE_RATE: usize = 16000; +const N_FFT: usize = 400; +const N_MELS: usize = 80; +const HOP_LENGTH: usize = 160; +const CHUNK_LENGTH: usize = 30; +const N_SAMPLES: usize = CHUNK_LENGTH * SAMPLE_RATE; // 480000 samples in a 30-second chunk +const N_FRAMES: usize = N_SAMPLES / HOP_LENGTH; // 3000 frames in a mel spectrogram input +const N_SAMPLES_PER_TOKEN: usize = HOP_LENGTH * 2; // the initial convolutions has stride 2 +const FRAMES_PER_SECOND: usize = SAMPLE_RATE / HOP_LENGTH; // 10ms per audio frame +const TOKENS_PER_SECOND: usize = SAMPLE_RATE / N_SAMPLES_PER_TOKEN; // 20ms per audio token + +const NO_SPEECH_THRESHOLD: f64 = 0.6; +const LOGPROB_THRESHOLD: f64 = -1.0; +const TEMPERATURES: [f64; 6] = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]; +const COMPRESSION_RATIO_THRESHOLD: f64 = 2.4; + struct VarBuilder<'a> { safetensors: Option<(HashMap, Vec>)>, dtype: DType, @@ -510,6 +528,7 @@ impl TextDecoder { mask, }) } + fn forward(&self, x: &Tensor, xa: &Tensor) -> Result { let x_dims = x.dims(); let last = x_dims[x_dims.len() - 1]; @@ -530,13 +549,18 @@ impl TextDecoder { struct Whisper { encoder: AudioEncoder, decoder: TextDecoder, + config: Config, } impl Whisper { - fn load(vb: &VarBuilder, cfg: &Config) -> Result { - let encoder = AudioEncoder::load("encoder", vb, cfg)?; - let decoder = TextDecoder::load("decoder", vb, cfg)?; - Ok(Self { encoder, decoder }) + fn load(vb: &VarBuilder, config: Config) -> Result { + let encoder = AudioEncoder::load("encoder", vb, &config)?; + let decoder = TextDecoder::load("decoder", vb, &config)?; + Ok(Self { + encoder, + decoder, + config, + }) } fn forward(&self, mel: &Tensor, tokens: &Tensor) -> Result { let enc = self.encoder.forward(mel)?; @@ -557,9 +581,60 @@ struct Args { #[arg(long)] input: String, + + #[arg(long)] + tokenizer_config: String, +} + +#[derive(Debug, Clone)] +struct DecodingResult { + audio_features: Tensor, + tokens: Vec, + text: String, + avg_logprob: f64, + no_speech_prob: f64, + temperature: f64, + compression_ratio: f64, +} + +#[derive(Debug, Clone)] +struct Segment { + start: f64, + end: f64, + tokens: Vec, + result: DecodingResult, +} + +fn decode(model: &Whisper, mel: &Tensor, t: f64) -> Result { + let audio_features = model.encoder.forward(&mel)?; + let sample_len = model.config.n_text_ctx / 2; + let mut tokens: Vec = vec![]; // TODO: get initial tokens + for i in 0..sample_len { + let tokens = Tensor::new(tokens.as_slice(), &mel.device())?; + let logits = model.decoder.forward(&tokens, mel)?; + // logits + } + todo!() +} + +fn decode_with_fallback(model: &Whisper, segment: &Tensor) -> Result { + for (i, &t) in TEMPERATURES.iter().enumerate() { + let dr: DecodingResult = decode(model, segment, t)?; + if i == TEMPERATURES.len() - 1 { + return Ok(dr); + } + let needs_fallback = dr.compression_ratio > COMPRESSION_RATIO_THRESHOLD + || dr.avg_logprob < LOGPROB_THRESHOLD; + if !needs_fallback || dr.no_speech_prob > NO_SPEECH_THRESHOLD { + return Ok(dr); + } + } + unreachable!() } fn main() -> Result<()> { + use tokenizers::Tokenizer; + let args = Args::parse(); let device = if args.cpu { Device::Cpu @@ -567,23 +642,31 @@ fn main() -> Result<()> { Device::new_cuda(0)? }; + let tokenizer = Tokenizer::from_file(args.tokenizer_config).map_err(E::msg)?; + let input = unsafe { candle::safetensors::MmapedFile::new(args.input)? }; let input = input.deserialize()?; - let tokens = input.tensor("tokens", &device)?.to_dtype(DType::U32)?; let mel = input.tensor("mel", &device)?; let weights = unsafe { candle::safetensors::MmapedFile::new(args.weights)? }; let weights = weights.deserialize()?; - let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, device.clone()); - let cfg = Config::tiny_en(); + let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, device); + let model = Whisper::load(&vb, Config::tiny_en())?; - let model = Whisper::load(&vb, &cfg)?; - let logits = model.forward(&mel, &tokens)?; - println!("tokens\n{tokens}"); - println!("logits:\n{logits}"); - println!("python logits: {}", input.tensor("dec", &device)?); - let enc = model.encoder.forward(&mel)?; - println!("encoder:\n{enc}"); - println!("python enc: {}", input.tensor("enc", &device)?); + let (_, content_frames) = mel.shape().r2()?; + let content_frames = content_frames - N_SAMPLES; + let mut seek = 0; + while seek < content_frames { + let time_offset = (seek * HOP_LENGTH) as f64 / SAMPLE_RATE as f64; + let segment_size = usize::min(content_frames - seek, N_FRAMES); + let mel_segment = mel.narrow(1, seek, segment_size)?; + let segment_duration = (segment_size * HOP_LENGTH) as f64 / SAMPLE_RATE as f64; + let dr = decode_with_fallback(&model, &mel_segment)?; + if dr.no_speech_prob > NO_SPEECH_THRESHOLD && dr.avg_logprob < LOGPROB_THRESHOLD { + seek += segment_size; + continue; + } + // + } Ok(()) } From 80f25e6fbbef4b46876c254692ca08d581a61be1 Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 21:43:20 +0100 Subject: [PATCH 21/36] More decoding. --- candle-examples/examples/whisper/main.rs | 126 +++++++++++++++++------ 1 file changed, 95 insertions(+), 31 deletions(-) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 5b4ab4ce..45ea74a0 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -7,7 +7,9 @@ use anyhow::{Error as E, Result}; use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor}; use clap::Parser; +use rand::{distributions::Distribution, SeedableRng}; use std::collections::HashMap; +use tokenizers::Tokenizer; const DTYPE: DType = DType::F32; @@ -584,12 +586,15 @@ struct Args { #[arg(long)] tokenizer_config: String, + + /// The seed to use when generating random samples. + #[arg(long, default_value_t = 299792458)] + seed: u64, } #[derive(Debug, Clone)] struct DecodingResult { - audio_features: Tensor, - tokens: Vec, + tokens: Vec, text: String, avg_logprob: f64, no_speech_prob: f64, @@ -600,73 +605,132 @@ struct DecodingResult { #[derive(Debug, Clone)] struct Segment { start: f64, - end: f64, - tokens: Vec, - result: DecodingResult, + duration: f64, + dr: DecodingResult, } -fn decode(model: &Whisper, mel: &Tensor, t: f64) -> Result { - let audio_features = model.encoder.forward(&mel)?; - let sample_len = model.config.n_text_ctx / 2; - let mut tokens: Vec = vec![]; // TODO: get initial tokens - for i in 0..sample_len { - let tokens = Tensor::new(tokens.as_slice(), &mel.device())?; - let logits = model.decoder.forward(&tokens, mel)?; - // logits - } - todo!() +struct Decode { + model: Whisper, + rng: rand::rngs::StdRng, + tokenizer: Tokenizer, } -fn decode_with_fallback(model: &Whisper, segment: &Tensor) -> Result { - for (i, &t) in TEMPERATURES.iter().enumerate() { - let dr: DecodingResult = decode(model, segment, t)?; - if i == TEMPERATURES.len() - 1 { - return Ok(dr); - } - let needs_fallback = dr.compression_ratio > COMPRESSION_RATIO_THRESHOLD - || dr.avg_logprob < LOGPROB_THRESHOLD; - if !needs_fallback || dr.no_speech_prob > NO_SPEECH_THRESHOLD { - return Ok(dr); +impl Decode { + fn decode(&mut self, mel: &Tensor, t: f64) -> Result { + let model = &self.model; + let audio_features = model.encoder.forward(mel)?; + let sample_len = model.config.n_text_ctx / 2; + let mut sum_logprob = 0f64; + let no_speech_prob = f64::NAN; + let mut tokens: Vec = vec![]; // TODO: get initial tokens + for _i in 0..sample_len { + let tokens_t = Tensor::new(tokens.as_slice(), &mel.device())?; + let logits = model.decoder.forward(&tokens_t, &audio_features)?; + let next_token = if t > 0f64 { + let prs = (&logits / t)?.softmax(logits.rank() - 1)?; + let logits_v: Vec = prs.to_vec1()?; + let distr = rand::distributions::WeightedIndex::new(&logits_v)?; + distr.sample(&mut self.rng) as u32 + } else { + let logits_v: Vec = logits.to_vec1()?; + logits_v + .iter() + .enumerate() + .max_by(|(_, u), (_, v)| u.total_cmp(v)) + .map(|(i, _)| i as u32) + .unwrap() + }; + tokens.push(next_token); + let prob = logits + .softmax(logits.rank() - 1)? + .get(next_token as usize)? + .to_scalar::()? as f64; + sum_logprob += prob.ln(); + // 50256 is the eot token, TODO: parameterize this. + if next_token == 50256 || tokens.len() > model.config.n_text_ctx { + break; + } } + let text = self + .tokenizer + .decode(tokens.clone(), true) + .map_err(E::msg)?; + let avg_logprob = sum_logprob / tokens.len() as f64; + + Ok(DecodingResult { + tokens, + text, + avg_logprob, + no_speech_prob, + temperature: t, + compression_ratio: f64::NAN, + }) + } + + fn decode_with_fallback(&mut self, segment: &Tensor) -> Result { + for (i, &t) in TEMPERATURES.iter().enumerate() { + let dr: DecodingResult = self.decode(segment, t)?; + if i == TEMPERATURES.len() - 1 { + return Ok(dr); + } + let needs_fallback = dr.compression_ratio > COMPRESSION_RATIO_THRESHOLD + || dr.avg_logprob < LOGPROB_THRESHOLD; + if !needs_fallback || dr.no_speech_prob > NO_SPEECH_THRESHOLD { + return Ok(dr); + } + } + unreachable!() } - unreachable!() } fn main() -> Result<()> { - use tokenizers::Tokenizer; - let args = Args::parse(); let device = if args.cpu { Device::Cpu } else { Device::new_cuda(0)? }; + let rng = rand::rngs::StdRng::seed_from_u64(args.seed); let tokenizer = Tokenizer::from_file(args.tokenizer_config).map_err(E::msg)?; let input = unsafe { candle::safetensors::MmapedFile::new(args.input)? }; let input = input.deserialize()?; let mel = input.tensor("mel", &device)?; + println!("loaded mel: {:?}", mel.dims()); + let mel = if mel.rank() > 2 { mel.squeeze(0)? } else { mel }; let weights = unsafe { candle::safetensors::MmapedFile::new(args.weights)? }; let weights = weights.deserialize()?; let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, device); let model = Whisper::load(&vb, Config::tiny_en())?; + let mut dc = Decode { + model, + rng, + tokenizer, + }; let (_, content_frames) = mel.shape().r2()?; let content_frames = content_frames - N_SAMPLES; let mut seek = 0; + let mut segments = vec![]; while seek < content_frames { let time_offset = (seek * HOP_LENGTH) as f64 / SAMPLE_RATE as f64; let segment_size = usize::min(content_frames - seek, N_FRAMES); let mel_segment = mel.narrow(1, seek, segment_size)?; let segment_duration = (segment_size * HOP_LENGTH) as f64 / SAMPLE_RATE as f64; - let dr = decode_with_fallback(&model, &mel_segment)?; + let dr = dc.decode_with_fallback(&mel_segment)?; + seek += segment_size; if dr.no_speech_prob > NO_SPEECH_THRESHOLD && dr.avg_logprob < LOGPROB_THRESHOLD { - seek += segment_size; continue; } - // + let segment = Segment { + start: time_offset, + duration: segment_duration, + dr, + }; + println!("{seek} {segment:?}"); + segments.push(segment) } Ok(()) } From 9fe7a428954e774f760830a063376e9fcf228e13 Mon Sep 17 00:00:00 2001 From: laurent Date: Tue, 4 Jul 2023 22:18:07 +0100 Subject: [PATCH 22/36] More whisper sampling. --- candle-examples/examples/whisper/main.rs | 15 ++++++++++----- 1 file changed, 10 insertions(+), 5 deletions(-) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 45ea74a0..647ac6f9 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -619,13 +619,20 @@ impl Decode { fn decode(&mut self, mel: &Tensor, t: f64) -> Result { let model = &self.model; let audio_features = model.encoder.forward(mel)?; + println!("audio features: {:?}", audio_features.dims()); let sample_len = model.config.n_text_ctx / 2; let mut sum_logprob = 0f64; let no_speech_prob = f64::NAN; - let mut tokens: Vec = vec![]; // TODO: get initial tokens + // TODO: 50257 is the start of transcipt token, be more principled about get initial tokens + let mut tokens: Vec = vec![50257]; for _i in 0..sample_len { let tokens_t = Tensor::new(tokens.as_slice(), &mel.device())?; + // Insert a batch dim. + let tokens_t = tokens_t.unsqueeze(0)?; let logits = model.decoder.forward(&tokens_t, &audio_features)?; + let logits = logits.squeeze(0)?; + let (seq_len, _) = logits.shape().r2()?; + let logits = logits.get(seq_len - 1)?; let next_token = if t > 0f64 { let prs = (&logits / t)?.softmax(logits.rank() - 1)?; let logits_v: Vec = prs.to_vec1()?; @@ -698,7 +705,6 @@ fn main() -> Result<()> { let input = input.deserialize()?; let mel = input.tensor("mel", &device)?; println!("loaded mel: {:?}", mel.dims()); - let mel = if mel.rank() > 2 { mel.squeeze(0)? } else { mel }; let weights = unsafe { candle::safetensors::MmapedFile::new(args.weights)? }; let weights = weights.deserialize()?; @@ -710,14 +716,13 @@ fn main() -> Result<()> { tokenizer, }; - let (_, content_frames) = mel.shape().r2()?; - let content_frames = content_frames - N_SAMPLES; + let (_, _, content_frames) = mel.shape().r3()?; let mut seek = 0; let mut segments = vec![]; while seek < content_frames { let time_offset = (seek * HOP_LENGTH) as f64 / SAMPLE_RATE as f64; let segment_size = usize::min(content_frames - seek, N_FRAMES); - let mel_segment = mel.narrow(1, seek, segment_size)?; + let mel_segment = mel.narrow(2, seek, segment_size)?; let segment_duration = (segment_size * HOP_LENGTH) as f64 / SAMPLE_RATE as f64; let dr = dc.decode_with_fallback(&mel_segment)?; seek += segment_size; From 8cf803d1a3e32bc929754b3dc7e3a49906648fe8 Mon Sep 17 00:00:00 2001 From: laurent Date: Wed, 5 Jul 2023 05:46:53 +0100 Subject: [PATCH 23/36] Split the model in a separate file. --- candle-examples/examples/whisper/main.rs | 546 +--------------------- candle-examples/examples/whisper/model.rs | 545 +++++++++++++++++++++ 2 files changed, 548 insertions(+), 543 deletions(-) create mode 100644 candle-examples/examples/whisper/model.rs diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 647ac6f9..8bf31f34 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -5,11 +5,12 @@ // - language detection? use anyhow::{Error as E, Result}; -use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor}; +use candle::{DType, Device, Tensor}; use clap::Parser; use rand::{distributions::Distribution, SeedableRng}; -use std::collections::HashMap; use tokenizers::Tokenizer; +mod model; +use model::{Config, VarBuilder, Whisper}; const DTYPE: DType = DType::F32; @@ -30,547 +31,6 @@ const LOGPROB_THRESHOLD: f64 = -1.0; const TEMPERATURES: [f64; 6] = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]; const COMPRESSION_RATIO_THRESHOLD: f64 = 2.4; -struct VarBuilder<'a> { - safetensors: Option<(HashMap, Vec>)>, - dtype: DType, - device: Device, -} - -impl<'a> VarBuilder<'a> { - pub fn from_safetensors( - safetensors: Vec>, - dtype: DType, - device: Device, - ) -> Self { - let mut routing = HashMap::new(); - for (index, sf) in safetensors.iter().enumerate() { - for k in sf.names() { - routing.insert(k.to_string(), index); - } - } - Self { - safetensors: Some((routing, safetensors)), - device, - dtype, - } - } - - pub fn zeros(dtype: DType, device: Device) -> Self { - Self { - safetensors: None, - device, - dtype, - } - } - - pub fn get>(&self, s: S, tensor_name: &str) -> candle::Result { - let s: Shape = s.into(); - match &self.safetensors { - None => Tensor::zeros(s, self.dtype, &self.device), - Some((routing, safetensors)) => { - // Unwrap or 0 just to let the proper error flow. - let index = routing.get(tensor_name).unwrap_or(&0); - let tensor = safetensors[*index] - .tensor(tensor_name, &self.device)? - .to_dtype(self.dtype)?; - if *tensor.shape() != s { - let msg = format!("shape mismatch for {tensor_name}"); - Err(candle::Error::UnexpectedShape { - msg, - expected: s, - got: tensor.shape().clone(), - })? - } - Ok(tensor) - } - } - } -} - -#[derive(Debug, Clone, Copy, PartialEq, Eq)] -enum HiddenAct { - Gelu, - Relu, -} - -impl HiddenAct { - fn forward(&self, xs: &Tensor) -> candle::Result { - match self { - Self::Gelu => xs.gelu(), - Self::Relu => xs.relu(), - } - } -} - -#[derive(Debug, Clone, PartialEq)] -struct Config { - n_mels: usize, - n_audio_ctx: usize, - n_audio_state: usize, - n_audio_head: usize, - n_audio_layer: usize, - n_vocab: usize, - n_text_ctx: usize, - n_text_state: usize, - n_text_head: usize, - n_text_layer: usize, -} - -impl Config { - fn tiny_en() -> Self { - Self { - n_mels: 80, - n_vocab: 51864, - n_audio_ctx: 1500, - n_audio_state: 384, - n_audio_head: 6, - n_audio_layer: 4, - n_text_ctx: 448, - n_text_state: 384, - n_text_head: 6, - n_text_layer: 4, - } - } -} - -struct Embedding { - embeddings: Tensor, - hidden_size: usize, -} - -impl Embedding { - fn new(embeddings: Tensor, hidden_size: usize) -> Self { - Self { - embeddings, - hidden_size, - } - } - - fn load(vocab_size: usize, hidden_size: usize, p: &str, vb: &VarBuilder) -> Result { - let embeddings = vb.get((vocab_size, hidden_size), &format!("{p}.weight"))?; - Ok(Self::new(embeddings, hidden_size)) - } - - fn forward(&self, indexes: &Tensor) -> Result { - let mut final_dims = indexes.dims().to_vec(); - final_dims.push(self.hidden_size); - let indexes = indexes.flatten_all()?; - let values = Tensor::embedding(&indexes, &self.embeddings)?; - let values = values.reshape(final_dims)?; - Ok(values) - } -} - -struct Linear { - weight: Tensor, - bias: Option, -} - -impl Linear { - fn load(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result { - let weight = vb.get((size2, size1), &format!("{p}.weight"))?; - let bias = vb.get(size2, &format!("{p}.bias"))?; - Ok(Self { - weight, - bias: Some(bias), - }) - } - - fn load_no_bias(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result { - let weight = vb.get((size2, size1), &format!("{p}.weight"))?; - Ok(Self { weight, bias: None }) - } - - fn forward(&self, x: &Tensor) -> candle::Result { - let (bsize, _, _) = x.shape().r3()?; - let w = self.weight.broadcast_left(bsize)?.t()?; - let x = x.matmul(&w)?; - match &self.bias { - None => Ok(x), - Some(bias) => x.broadcast_add(bias), - } - } -} - -#[derive(Debug, Clone, Copy, PartialEq, Eq)] -struct ConvConfig { - padding: usize, - stride: usize, -} - -impl Default for ConvConfig { - fn default() -> Self { - Self { - padding: 0, - stride: 1, - } - } -} - -struct Conv1D { - weight: Tensor, - bias: Option, - config: ConvConfig, -} - -impl Conv1D { - fn load( - in_channels: usize, - out_channels: usize, - kernel_size: usize, - config: ConvConfig, - p: &str, - vb: &VarBuilder, - ) -> Result { - let weight = vb.get( - (out_channels, in_channels, kernel_size), - &format!("{p}.weight"), - )?; - let bias = vb.get(out_channels, &format!("{p}.bias"))?; - Ok(Self { - weight, - bias: Some(bias), - config, - }) - } - - fn load_no_bias( - in_channels: usize, - out_channels: usize, - kernel_size: usize, - config: ConvConfig, - p: &str, - vb: &VarBuilder, - ) -> Result { - let weight = vb.get( - (out_channels, in_channels, kernel_size), - &format!("{p}.weight"), - )?; - Ok(Self { - weight, - bias: None, - config, - }) - } - - fn forward(&self, x: &Tensor) -> Result { - let x = x.conv1d(&self.weight, self.config.padding, self.config.stride)?; - match &self.bias { - None => Ok(x), - Some(bias) => { - let b = bias.shape().r1()?; - let bias = bias.reshape((1, b, 1))?; - Ok(x.broadcast_add(&bias)?) - } - } - } -} - -struct Dropout { - pr: f64, -} - -impl Dropout { - fn new(pr: f64) -> Self { - Self { pr } - } - - fn forward(&self, x: &Tensor) -> Result { - // TODO - Ok(x.clone()) - } -} - -// This layer norm version handles both weight and bias so removes the mean. -struct LayerNorm { - weight: Tensor, - bias: Tensor, - eps: f64, -} - -impl LayerNorm { - fn load(size: usize, p: &str, vb: &VarBuilder) -> Result { - let weight = vb.get(size, &format!("{p}.weight"))?; - let bias = vb.get(size, &format!("{p}.bias"))?; - Ok(Self { - weight, - bias, - eps: 1e-5, - }) - } - - fn forward(&self, x: &Tensor) -> Result { - let (_bsize, _seq_len, hidden_size) = x.shape().r3()?; - let mean_x = (x.sum(&[2])? / hidden_size as f64)?; - let x = x.broadcast_sub(&mean_x)?; - let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?; - let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?; - let x = x_normed - .broadcast_mul(&self.weight)? - .broadcast_add(&self.bias)?; - Ok(x) - } -} - -// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62 -struct MultiHeadAttention { - query: Linear, - key: Linear, - value: Linear, - out: Linear, - n_head: usize, -} - -impl MultiHeadAttention { - fn load(n_state: usize, n_head: usize, p: &str, vb: &VarBuilder) -> Result { - let query = Linear::load(n_state, n_state, &format!("{p}.query"), vb)?; - let value = Linear::load(n_state, n_state, &format!("{p}.value"), vb)?; - let key = Linear::load_no_bias(n_state, n_state, &format!("{p}.key"), vb)?; - let out = Linear::load(n_state, n_state, &format!("{p}.out"), vb)?; - Ok(Self { - query, - key, - value, - out, - n_head, - }) - } - - fn forward(&self, x: &Tensor, xa: Option<&Tensor>, mask: Option<&Tensor>) -> Result { - let q = self.query.forward(x)?; - let k = self.key.forward(xa.unwrap_or(x))?; - let v = self.value.forward(xa.unwrap_or(x))?; - let wv = self.qkv_attention(&q, &k, &v, mask)?; - let out = self.out.forward(&wv)?; - Ok(out) - } - - fn reshape_head(&self, x: &Tensor) -> Result { - let (n_batch, n_ctx, n_state) = x.shape().r3()?; - let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head]; - Ok(x.reshape(target_dims)?.transpose(1, 2)?) - } - - fn qkv_attention( - &self, - q: &Tensor, - k: &Tensor, - v: &Tensor, - mask: Option<&Tensor>, - ) -> Result { - let (_, n_ctx, n_state) = q.shape().r3()?; - let scale = ((n_state / self.n_head) as f64).powf(-0.25); - let q = (self.reshape_head(q)? * scale)?; - let k = (self.reshape_head(k)?.transpose(2, 3)? * scale)?; - let v = self.reshape_head(v)?.contiguous()?; - let mut qk = q.matmul(&k)?; - if let Some(mask) = mask { - let mask = mask.narrow(0, 0, n_ctx)?.narrow(1, 0, n_ctx)?; - qk = qk.broadcast_add(&mask)? - } - let w = qk.softmax(qk.rank() - 1)?; - let wv = w.matmul(&v)?.transpose(1, 2)?.flatten(Some(2), None)?; - Ok(wv) - } -} - -// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L111 -struct ResidualAttentionBlock { - attn: MultiHeadAttention, - attn_ln: LayerNorm, - cross_attn: Option<(MultiHeadAttention, LayerNorm)>, - mlp_linear1: Linear, - mlp_linear2: Linear, - mlp_ln: LayerNorm, -} - -impl ResidualAttentionBlock { - fn load(n_state: usize, n_head: usize, ca: bool, p: &str, vb: &VarBuilder) -> Result { - let attn = MultiHeadAttention::load(n_state, n_head, &format!("{p}.attn"), vb)?; - let attn_ln = LayerNorm::load(n_state, &format!("{p}.attn_ln"), vb)?; - let cross_attn = if ca { - let cross_attn = - MultiHeadAttention::load(n_state, n_head, &format!("{p}.cross_attn"), vb)?; - let cross_attn_ln = LayerNorm::load(n_state, &format!("{p}.cross_attn_ln"), vb)?; - Some((cross_attn, cross_attn_ln)) - } else { - None - }; - let n_mlp = n_state * 4; - let mlp_linear1 = Linear::load(n_state, n_mlp, &format!("{p}.mlp.0"), vb)?; - let mlp_linear2 = Linear::load(n_mlp, n_state, &format!("{p}.mlp.2"), vb)?; - let mlp_ln = LayerNorm::load(n_state, &format!("{p}.mlp_ln"), vb)?; - Ok(Self { - attn, - attn_ln, - cross_attn, - mlp_linear1, - mlp_linear2, - mlp_ln, - }) - } - - fn forward(&self, x: &Tensor, xa: Option<&Tensor>, mask: Option<&Tensor>) -> Result { - let attn = self.attn.forward(&self.attn_ln.forward(x)?, None, mask)?; - let mut x = (x + attn)?; - if let Some((attn, ln)) = &self.cross_attn { - x = (&x + attn.forward(&ln.forward(&x)?, xa, None)?)?; - } - let mlp = self.mlp_linear2.forward( - &self - .mlp_linear1 - .forward(&self.mlp_ln.forward(&x)?)? - .gelu()?, - )?; - Ok((x + mlp)?) - } -} - -fn sinusoids(length: usize, channels: usize) -> Result { - let max_timescale = 10000f32; - let log_timescale_increment = max_timescale.ln() / (channels / 2 - 1) as f32; - let inv_timescales: Vec<_> = (0..channels / 2) - .map(|i| (i as f32 * (-log_timescale_increment)).exp()) - .collect(); - let arange: Vec<_> = (0..length).map(|c| c as f32).collect(); - let inv_timescales = Tensor::new(inv_timescales.as_slice(), &Device::Cpu)?.unsqueeze(0)?; - let arange = Tensor::new(arange.as_slice(), &Device::Cpu)?.unsqueeze(1)?; - let sh = (length, channels / 2); - let scaled_time = (arange.broadcast_as(sh)? * inv_timescales.broadcast_as(sh)?)?; - let sincos = Tensor::cat(&[scaled_time.sin()?, scaled_time.cos()?], 1)?; - Ok(sincos) -} - -// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143 -struct AudioEncoder { - conv1: Conv1D, - conv2: Conv1D, - positional_embedding: Tensor, - blocks: Vec, - ln_post: LayerNorm, -} - -impl AudioEncoder { - fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result { - let n_state = cfg.n_audio_state; - let n_head = cfg.n_audio_head; - let n_ctx = cfg.n_audio_ctx; - let cfg1 = ConvConfig { - padding: 1, - stride: 1, - }; - let cfg2 = ConvConfig { - padding: 1, - stride: 2, - }; - let conv1 = Conv1D::load(cfg.n_mels, n_state, 3, cfg1, &format!("{p}.conv1"), vb)?; - let conv2 = Conv1D::load(n_state, n_state, 3, cfg2, &format!("{p}.conv2"), vb)?; - let positional_embedding = sinusoids(n_ctx, n_state)?.to_device(&vb.device)?; - let blocks = (0..cfg.n_audio_layer) - .map(|i| { - ResidualAttentionBlock::load(n_state, n_head, false, &format!("{p}.blocks.{i}"), vb) - }) - .collect::>>()?; - let ln_post = LayerNorm::load(n_state, &format!("{p}.ln_post"), vb)?; - Ok(Self { - conv1, - conv2, - positional_embedding, - blocks, - ln_post, - }) - } - fn forward(&self, x: &Tensor) -> Result { - let x = self.conv1.forward(x)?.gelu()?; - let x = self.conv2.forward(&x)?.gelu()?; - let x = x.transpose(1, 2)?; - let mut x = x.broadcast_add(&self.positional_embedding)?; - for block in self.blocks.iter() { - x = block.forward(&x, None, None)? - } - let x = self.ln_post.forward(&x)?; - Ok(x) - } -} - -// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L176 -struct TextDecoder { - token_embedding: Embedding, - positional_embedding: Tensor, - blocks: Vec, - ln: LayerNorm, - mask: Tensor, -} - -impl TextDecoder { - fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result { - let n_state = cfg.n_text_state; - let n_head = cfg.n_text_head; - let n_ctx = cfg.n_text_ctx; - let token_embedding = - Embedding::load(cfg.n_vocab, n_state, &format!("{p}.token_embedding"), vb)?; - let positional_embedding = - vb.get((n_ctx, n_state), &format!("{p}.positional_embedding"))?; - let blocks = (0..cfg.n_text_layer) - .map(|i| { - ResidualAttentionBlock::load(n_state, n_head, true, &format!("{p}.blocks.{i}"), vb) - }) - .collect::>>()?; - let ln = LayerNorm::load(n_state, &format!("{p}.ln"), vb)?; - let mask: Vec<_> = (0..n_ctx) - .flat_map(|i| (0..n_ctx).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 })) - .collect(); - let mask = Tensor::from_vec(mask, (n_ctx, n_ctx), &vb.device)?; - - Ok(Self { - token_embedding, - positional_embedding, - blocks, - ln, - mask, - }) - } - - fn forward(&self, x: &Tensor, xa: &Tensor) -> Result { - let x_dims = x.dims(); - let last = x_dims[x_dims.len() - 1]; - let token_embedding = self.token_embedding.forward(x)?; - let positional_embedding = self.positional_embedding.narrow(0, 0, last)?; - let mut x = token_embedding.broadcast_add(&positional_embedding)?; - for block in self.blocks.iter() { - x = block.forward(&x, Some(xa), Some(&self.mask))?; - } - let x = self.ln.forward(&x)?; - let w = self.token_embedding.embeddings.broadcast_left(x_dims[0])?; - let logits = x.matmul(&w.t()?)?; - Ok(logits) - } -} - -// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L221 -struct Whisper { - encoder: AudioEncoder, - decoder: TextDecoder, - config: Config, -} - -impl Whisper { - fn load(vb: &VarBuilder, config: Config) -> Result { - let encoder = AudioEncoder::load("encoder", vb, &config)?; - let decoder = TextDecoder::load("decoder", vb, &config)?; - Ok(Self { - encoder, - decoder, - config, - }) - } - fn forward(&self, mel: &Tensor, tokens: &Tensor) -> Result { - let enc = self.encoder.forward(mel)?; - let dec = self.decoder.forward(tokens, &enc)?; - Ok(dec) - } -} - #[derive(Parser, Debug)] #[command(author, version, about, long_about = None)] struct Args { diff --git a/candle-examples/examples/whisper/model.rs b/candle-examples/examples/whisper/model.rs new file mode 100644 index 00000000..94607934 --- /dev/null +++ b/candle-examples/examples/whisper/model.rs @@ -0,0 +1,545 @@ +use anyhow::Result; +use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor}; +use std::collections::HashMap; + +pub struct VarBuilder<'a> { + safetensors: Option<(HashMap, Vec>)>, + dtype: DType, + device: Device, +} + +impl<'a> VarBuilder<'a> { + pub fn from_safetensors( + safetensors: Vec>, + dtype: DType, + device: Device, + ) -> Self { + let mut routing = HashMap::new(); + for (index, sf) in safetensors.iter().enumerate() { + for k in sf.names() { + routing.insert(k.to_string(), index); + } + } + Self { + safetensors: Some((routing, safetensors)), + device, + dtype, + } + } + + pub fn zeros(dtype: DType, device: Device) -> Self { + Self { + safetensors: None, + device, + dtype, + } + } + + pub fn get>(&self, s: S, tensor_name: &str) -> candle::Result { + let s: Shape = s.into(); + match &self.safetensors { + None => Tensor::zeros(s, self.dtype, &self.device), + Some((routing, safetensors)) => { + // Unwrap or 0 just to let the proper error flow. + let index = routing.get(tensor_name).unwrap_or(&0); + let tensor = safetensors[*index] + .tensor(tensor_name, &self.device)? + .to_dtype(self.dtype)?; + if *tensor.shape() != s { + let msg = format!("shape mismatch for {tensor_name}"); + Err(candle::Error::UnexpectedShape { + msg, + expected: s, + got: tensor.shape().clone(), + })? + } + Ok(tensor) + } + } + } +} + +#[derive(Debug, Clone, Copy, PartialEq, Eq)] +enum HiddenAct { + Gelu, + Relu, +} + +impl HiddenAct { + fn forward(&self, xs: &Tensor) -> candle::Result { + match self { + Self::Gelu => xs.gelu(), + Self::Relu => xs.relu(), + } + } +} + +#[derive(Debug, Clone, PartialEq)] +pub struct Config { + pub n_mels: usize, + pub n_audio_ctx: usize, + pub n_audio_state: usize, + pub n_audio_head: usize, + pub n_audio_layer: usize, + pub n_vocab: usize, + pub n_text_ctx: usize, + pub n_text_state: usize, + pub n_text_head: usize, + pub n_text_layer: usize, +} + +impl Config { + pub fn tiny_en() -> Self { + Self { + n_mels: 80, + n_vocab: 51864, + n_audio_ctx: 1500, + n_audio_state: 384, + n_audio_head: 6, + n_audio_layer: 4, + n_text_ctx: 448, + n_text_state: 384, + n_text_head: 6, + n_text_layer: 4, + } + } +} + +struct Embedding { + embeddings: Tensor, + hidden_size: usize, +} + +impl Embedding { + fn new(embeddings: Tensor, hidden_size: usize) -> Self { + Self { + embeddings, + hidden_size, + } + } + + fn load(vocab_size: usize, hidden_size: usize, p: &str, vb: &VarBuilder) -> Result { + let embeddings = vb.get((vocab_size, hidden_size), &format!("{p}.weight"))?; + Ok(Self::new(embeddings, hidden_size)) + } + + fn forward(&self, indexes: &Tensor) -> Result { + let mut final_dims = indexes.dims().to_vec(); + final_dims.push(self.hidden_size); + let indexes = indexes.flatten_all()?; + let values = Tensor::embedding(&indexes, &self.embeddings)?; + let values = values.reshape(final_dims)?; + Ok(values) + } +} + +struct Linear { + weight: Tensor, + bias: Option, +} + +impl Linear { + fn load(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result { + let weight = vb.get((size2, size1), &format!("{p}.weight"))?; + let bias = vb.get(size2, &format!("{p}.bias"))?; + Ok(Self { + weight, + bias: Some(bias), + }) + } + + fn load_no_bias(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result { + let weight = vb.get((size2, size1), &format!("{p}.weight"))?; + Ok(Self { weight, bias: None }) + } + + fn forward(&self, x: &Tensor) -> candle::Result { + let (bsize, _, _) = x.shape().r3()?; + let w = self.weight.broadcast_left(bsize)?.t()?; + let x = x.matmul(&w)?; + match &self.bias { + None => Ok(x), + Some(bias) => x.broadcast_add(bias), + } + } +} + +#[derive(Debug, Clone, Copy, PartialEq, Eq)] +struct ConvConfig { + padding: usize, + stride: usize, +} + +impl Default for ConvConfig { + fn default() -> Self { + Self { + padding: 0, + stride: 1, + } + } +} + +struct Conv1D { + weight: Tensor, + bias: Option, + config: ConvConfig, +} + +impl Conv1D { + fn load( + in_channels: usize, + out_channels: usize, + kernel_size: usize, + config: ConvConfig, + p: &str, + vb: &VarBuilder, + ) -> Result { + let weight = vb.get( + (out_channels, in_channels, kernel_size), + &format!("{p}.weight"), + )?; + let bias = vb.get(out_channels, &format!("{p}.bias"))?; + Ok(Self { + weight, + bias: Some(bias), + config, + }) + } + + fn load_no_bias( + in_channels: usize, + out_channels: usize, + kernel_size: usize, + config: ConvConfig, + p: &str, + vb: &VarBuilder, + ) -> Result { + let weight = vb.get( + (out_channels, in_channels, kernel_size), + &format!("{p}.weight"), + )?; + Ok(Self { + weight, + bias: None, + config, + }) + } + + fn forward(&self, x: &Tensor) -> Result { + let x = x.conv1d(&self.weight, self.config.padding, self.config.stride)?; + match &self.bias { + None => Ok(x), + Some(bias) => { + let b = bias.shape().r1()?; + let bias = bias.reshape((1, b, 1))?; + Ok(x.broadcast_add(&bias)?) + } + } + } +} + +struct Dropout { + pr: f64, +} + +impl Dropout { + fn new(pr: f64) -> Self { + Self { pr } + } + + fn forward(&self, x: &Tensor) -> Result { + // TODO + Ok(x.clone()) + } +} + +// This layer norm version handles both weight and bias so removes the mean. +struct LayerNorm { + weight: Tensor, + bias: Tensor, + eps: f64, +} + +impl LayerNorm { + fn load(size: usize, p: &str, vb: &VarBuilder) -> Result { + let weight = vb.get(size, &format!("{p}.weight"))?; + let bias = vb.get(size, &format!("{p}.bias"))?; + Ok(Self { + weight, + bias, + eps: 1e-5, + }) + } + + fn forward(&self, x: &Tensor) -> Result { + let (_bsize, _seq_len, hidden_size) = x.shape().r3()?; + let mean_x = (x.sum(&[2])? / hidden_size as f64)?; + let x = x.broadcast_sub(&mean_x)?; + let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?; + let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?; + let x = x_normed + .broadcast_mul(&self.weight)? + .broadcast_add(&self.bias)?; + Ok(x) + } +} + +// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62 +struct MultiHeadAttention { + query: Linear, + key: Linear, + value: Linear, + out: Linear, + n_head: usize, +} + +impl MultiHeadAttention { + fn load(n_state: usize, n_head: usize, p: &str, vb: &VarBuilder) -> Result { + let query = Linear::load(n_state, n_state, &format!("{p}.query"), vb)?; + let value = Linear::load(n_state, n_state, &format!("{p}.value"), vb)?; + let key = Linear::load_no_bias(n_state, n_state, &format!("{p}.key"), vb)?; + let out = Linear::load(n_state, n_state, &format!("{p}.out"), vb)?; + Ok(Self { + query, + key, + value, + out, + n_head, + }) + } + + fn forward(&self, x: &Tensor, xa: Option<&Tensor>, mask: Option<&Tensor>) -> Result { + let q = self.query.forward(x)?; + let k = self.key.forward(xa.unwrap_or(x))?; + let v = self.value.forward(xa.unwrap_or(x))?; + let wv = self.qkv_attention(&q, &k, &v, mask)?; + let out = self.out.forward(&wv)?; + Ok(out) + } + + fn reshape_head(&self, x: &Tensor) -> Result { + let (n_batch, n_ctx, n_state) = x.shape().r3()?; + let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head]; + Ok(x.reshape(target_dims)?.transpose(1, 2)?) + } + + fn qkv_attention( + &self, + q: &Tensor, + k: &Tensor, + v: &Tensor, + mask: Option<&Tensor>, + ) -> Result { + let (_, n_ctx, n_state) = q.shape().r3()?; + let scale = ((n_state / self.n_head) as f64).powf(-0.25); + let q = (self.reshape_head(q)? * scale)?; + let k = (self.reshape_head(k)?.transpose(2, 3)? * scale)?; + let v = self.reshape_head(v)?.contiguous()?; + let mut qk = q.matmul(&k)?; + if let Some(mask) = mask { + let mask = mask.narrow(0, 0, n_ctx)?.narrow(1, 0, n_ctx)?; + qk = qk.broadcast_add(&mask)? + } + let w = qk.softmax(qk.rank() - 1)?; + let wv = w.matmul(&v)?.transpose(1, 2)?.flatten(Some(2), None)?; + Ok(wv) + } +} + +// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L111 +struct ResidualAttentionBlock { + attn: MultiHeadAttention, + attn_ln: LayerNorm, + cross_attn: Option<(MultiHeadAttention, LayerNorm)>, + mlp_linear1: Linear, + mlp_linear2: Linear, + mlp_ln: LayerNorm, +} + +impl ResidualAttentionBlock { + fn load(n_state: usize, n_head: usize, ca: bool, p: &str, vb: &VarBuilder) -> Result { + let attn = MultiHeadAttention::load(n_state, n_head, &format!("{p}.attn"), vb)?; + let attn_ln = LayerNorm::load(n_state, &format!("{p}.attn_ln"), vb)?; + let cross_attn = if ca { + let cross_attn = + MultiHeadAttention::load(n_state, n_head, &format!("{p}.cross_attn"), vb)?; + let cross_attn_ln = LayerNorm::load(n_state, &format!("{p}.cross_attn_ln"), vb)?; + Some((cross_attn, cross_attn_ln)) + } else { + None + }; + let n_mlp = n_state * 4; + let mlp_linear1 = Linear::load(n_state, n_mlp, &format!("{p}.mlp.0"), vb)?; + let mlp_linear2 = Linear::load(n_mlp, n_state, &format!("{p}.mlp.2"), vb)?; + let mlp_ln = LayerNorm::load(n_state, &format!("{p}.mlp_ln"), vb)?; + Ok(Self { + attn, + attn_ln, + cross_attn, + mlp_linear1, + mlp_linear2, + mlp_ln, + }) + } + + fn forward(&self, x: &Tensor, xa: Option<&Tensor>, mask: Option<&Tensor>) -> Result { + let attn = self.attn.forward(&self.attn_ln.forward(x)?, None, mask)?; + let mut x = (x + attn)?; + if let Some((attn, ln)) = &self.cross_attn { + x = (&x + attn.forward(&ln.forward(&x)?, xa, None)?)?; + } + let mlp = self.mlp_linear2.forward( + &self + .mlp_linear1 + .forward(&self.mlp_ln.forward(&x)?)? + .gelu()?, + )?; + Ok((x + mlp)?) + } +} + +fn sinusoids(length: usize, channels: usize) -> Result { + let max_timescale = 10000f32; + let log_timescale_increment = max_timescale.ln() / (channels / 2 - 1) as f32; + let inv_timescales: Vec<_> = (0..channels / 2) + .map(|i| (i as f32 * (-log_timescale_increment)).exp()) + .collect(); + let arange: Vec<_> = (0..length).map(|c| c as f32).collect(); + let inv_timescales = Tensor::new(inv_timescales.as_slice(), &Device::Cpu)?.unsqueeze(0)?; + let arange = Tensor::new(arange.as_slice(), &Device::Cpu)?.unsqueeze(1)?; + let sh = (length, channels / 2); + let scaled_time = (arange.broadcast_as(sh)? * inv_timescales.broadcast_as(sh)?)?; + let sincos = Tensor::cat(&[scaled_time.sin()?, scaled_time.cos()?], 1)?; + Ok(sincos) +} + +// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143 +pub struct AudioEncoder { + conv1: Conv1D, + conv2: Conv1D, + positional_embedding: Tensor, + blocks: Vec, + ln_post: LayerNorm, +} + +impl AudioEncoder { + fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result { + let n_state = cfg.n_audio_state; + let n_head = cfg.n_audio_head; + let n_ctx = cfg.n_audio_ctx; + let cfg1 = ConvConfig { + padding: 1, + stride: 1, + }; + let cfg2 = ConvConfig { + padding: 1, + stride: 2, + }; + let conv1 = Conv1D::load(cfg.n_mels, n_state, 3, cfg1, &format!("{p}.conv1"), vb)?; + let conv2 = Conv1D::load(n_state, n_state, 3, cfg2, &format!("{p}.conv2"), vb)?; + let positional_embedding = sinusoids(n_ctx, n_state)?.to_device(&vb.device)?; + let blocks = (0..cfg.n_audio_layer) + .map(|i| { + ResidualAttentionBlock::load(n_state, n_head, false, &format!("{p}.blocks.{i}"), vb) + }) + .collect::>>()?; + let ln_post = LayerNorm::load(n_state, &format!("{p}.ln_post"), vb)?; + Ok(Self { + conv1, + conv2, + positional_embedding, + blocks, + ln_post, + }) + } + pub fn forward(&self, x: &Tensor) -> Result { + let x = self.conv1.forward(x)?.gelu()?; + let x = self.conv2.forward(&x)?.gelu()?; + let x = x.transpose(1, 2)?; + let mut x = x.broadcast_add(&self.positional_embedding)?; + for block in self.blocks.iter() { + x = block.forward(&x, None, None)? + } + let x = self.ln_post.forward(&x)?; + Ok(x) + } +} + +// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L176 +pub struct TextDecoder { + token_embedding: Embedding, + positional_embedding: Tensor, + blocks: Vec, + ln: LayerNorm, + mask: Tensor, +} + +impl TextDecoder { + fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result { + let n_state = cfg.n_text_state; + let n_head = cfg.n_text_head; + let n_ctx = cfg.n_text_ctx; + let token_embedding = + Embedding::load(cfg.n_vocab, n_state, &format!("{p}.token_embedding"), vb)?; + let positional_embedding = + vb.get((n_ctx, n_state), &format!("{p}.positional_embedding"))?; + let blocks = (0..cfg.n_text_layer) + .map(|i| { + ResidualAttentionBlock::load(n_state, n_head, true, &format!("{p}.blocks.{i}"), vb) + }) + .collect::>>()?; + let ln = LayerNorm::load(n_state, &format!("{p}.ln"), vb)?; + let mask: Vec<_> = (0..n_ctx) + .flat_map(|i| (0..n_ctx).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 })) + .collect(); + let mask = Tensor::from_vec(mask, (n_ctx, n_ctx), &vb.device)?; + + Ok(Self { + token_embedding, + positional_embedding, + blocks, + ln, + mask, + }) + } + + pub fn forward(&self, x: &Tensor, xa: &Tensor) -> Result { + let x_dims = x.dims(); + let last = x_dims[x_dims.len() - 1]; + let token_embedding = self.token_embedding.forward(x)?; + let positional_embedding = self.positional_embedding.narrow(0, 0, last)?; + let mut x = token_embedding.broadcast_add(&positional_embedding)?; + for block in self.blocks.iter() { + x = block.forward(&x, Some(xa), Some(&self.mask))?; + } + let x = self.ln.forward(&x)?; + let w = self.token_embedding.embeddings.broadcast_left(x_dims[0])?; + let logits = x.matmul(&w.t()?)?; + Ok(logits) + } +} + +// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L221 +pub struct Whisper { + pub encoder: AudioEncoder, + pub decoder: TextDecoder, + pub config: Config, +} + +impl Whisper { + pub fn load(vb: &VarBuilder, config: Config) -> Result { + let encoder = AudioEncoder::load("encoder", vb, &config)?; + let decoder = TextDecoder::load("decoder", vb, &config)?; + Ok(Self { + encoder, + decoder, + config, + }) + } + + pub fn forward(&self, mel: &Tensor, tokens: &Tensor) -> Result { + let enc = self.encoder.forward(mel)?; + let dec = self.decoder.forward(tokens, &enc)?; + Ok(dec) + } +} From 3ba4bfc501acafbdff526118b7f6be1ac99f3db5 Mon Sep 17 00:00:00 2001 From: laurent Date: Wed, 5 Jul 2023 05:50:33 +0100 Subject: [PATCH 24/36] More pretty printing. --- candle-examples/examples/whisper/main.rs | 1 + 1 file changed, 1 insertion(+) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 8bf31f34..36caa183 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -187,6 +187,7 @@ fn main() -> Result<()> { let dr = dc.decode_with_fallback(&mel_segment)?; seek += segment_size; if dr.no_speech_prob > NO_SPEECH_THRESHOLD && dr.avg_logprob < LOGPROB_THRESHOLD { + println!("no speech detected, skipping {seek} {dr:?}"); continue; } let segment = Segment { From 6d1e79d3782c93c7f6a097ce71a91a9a277e52ed Mon Sep 17 00:00:00 2001 From: laurent Date: Wed, 5 Jul 2023 06:42:29 +0100 Subject: [PATCH 25/36] Bugfix for to_scalar (use the proper start offset). --- candle-core/src/tensor.rs | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/candle-core/src/tensor.rs b/candle-core/src/tensor.rs index 25ab0a9b..95f663f0 100644 --- a/candle-core/src/tensor.rs +++ b/candle-core/src/tensor.rs @@ -326,7 +326,7 @@ impl Tensor { } let from_cpu_storage = |cpu_storage: &crate::CpuStorage| { let data = S::cpu_storage_as_slice(cpu_storage)?; - Ok::<_, Error>(data[0]) + Ok::<_, Error>(data[self.layout().start_offset()]) }; match self.storage.as_ref() { Storage::Cpu(cpu_storage) => from_cpu_storage(cpu_storage), From 9694e35db08b70ca3a9f60b54cf9f0701425edbd Mon Sep 17 00:00:00 2001 From: laurent Date: Wed, 5 Jul 2023 08:37:26 +0100 Subject: [PATCH 26/36] Clean the decode loop of the whisper example. --- candle-examples/examples/whisper/main.rs | 36 ++++++++++++++--------- candle-examples/examples/whisper/model.rs | 2 ++ 2 files changed, 24 insertions(+), 14 deletions(-) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 36caa183..1446e067 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -2,7 +2,8 @@ // https://github.com/openai/whisper/blob/main/whisper/model.py // TODO: // - kv-cache support? -// - language detection? +// - Language detection? +// - Batch size greater than 1. use anyhow::{Error as E, Result}; use candle::{DType, Device, Tensor}; @@ -31,6 +32,10 @@ const LOGPROB_THRESHOLD: f64 = -1.0; const TEMPERATURES: [f64; 6] = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]; const COMPRESSION_RATIO_THRESHOLD: f64 = 2.4; +// Tokenizer dependent bits. +const SOT_TOKEN: u32 = 50257; +const EOT_TOKEN: u32 = 50256; + #[derive(Parser, Debug)] #[command(author, version, about, long_about = None)] struct Args { @@ -83,11 +88,12 @@ impl Decode { let sample_len = model.config.n_text_ctx / 2; let mut sum_logprob = 0f64; let no_speech_prob = f64::NAN; - // TODO: 50257 is the start of transcipt token, be more principled about get initial tokens - let mut tokens: Vec = vec![50257]; + let mut tokens = vec![SOT_TOKEN]; for _i in 0..sample_len { let tokens_t = Tensor::new(tokens.as_slice(), &mel.device())?; - // Insert a batch dim. + + // The model expects a batch dim but this inference loop does not handle + // it so we add it at this point. let tokens_t = tokens_t.unsqueeze(0)?; let logits = model.decoder.forward(&tokens_t, &audio_features)?; let logits = logits.squeeze(0)?; @@ -112,11 +118,10 @@ impl Decode { .softmax(logits.rank() - 1)? .get(next_token as usize)? .to_scalar::()? as f64; - sum_logprob += prob.ln(); - // 50256 is the eot token, TODO: parameterize this. - if next_token == 50256 || tokens.len() > model.config.n_text_ctx { + if next_token == EOT_TOKEN || tokens.len() > model.config.n_text_ctx { break; } + sum_logprob += prob.ln(); } let text = self .tokenizer @@ -136,14 +141,17 @@ impl Decode { fn decode_with_fallback(&mut self, segment: &Tensor) -> Result { for (i, &t) in TEMPERATURES.iter().enumerate() { - let dr: DecodingResult = self.decode(segment, t)?; + let dr: Result = self.decode(segment, t); if i == TEMPERATURES.len() - 1 { - return Ok(dr); + return dr; } - let needs_fallback = dr.compression_ratio > COMPRESSION_RATIO_THRESHOLD - || dr.avg_logprob < LOGPROB_THRESHOLD; - if !needs_fallback || dr.no_speech_prob > NO_SPEECH_THRESHOLD { - return Ok(dr); + // On errors, we try again with a different temperature. + if let Ok(dr) = dr { + let needs_fallback = dr.compression_ratio > COMPRESSION_RATIO_THRESHOLD + || dr.avg_logprob < LOGPROB_THRESHOLD; + if !needs_fallback || dr.no_speech_prob > NO_SPEECH_THRESHOLD { + return Ok(dr); + } } } unreachable!() @@ -195,7 +203,7 @@ fn main() -> Result<()> { duration: segment_duration, dr, }; - println!("{seek} {segment:?}"); + println!("{seek}: {segment:?}"); segments.push(segment) } Ok(()) diff --git a/candle-examples/examples/whisper/model.rs b/candle-examples/examples/whisper/model.rs index 94607934..53ee6a90 100644 --- a/candle-examples/examples/whisper/model.rs +++ b/candle-examples/examples/whisper/model.rs @@ -1,3 +1,5 @@ +// We use anyhow rather than candle errors as it provides better support for getting the backtrace +// back when using RUST_LIB_BACKTRACE=1. use anyhow::Result; use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor}; use std::collections::HashMap; From a824c5c3e3f758874817514e87105c22f6352ded Mon Sep 17 00:00:00 2001 From: laurent Date: Wed, 5 Jul 2023 08:54:04 +0100 Subject: [PATCH 27/36] Populate the no-speech probability. --- candle-examples/examples/whisper/main.rs | 34 ++++++++++++++++++------ 1 file changed, 26 insertions(+), 8 deletions(-) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 1446e067..c77118f6 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -35,6 +35,8 @@ const COMPRESSION_RATIO_THRESHOLD: f64 = 2.4; // Tokenizer dependent bits. const SOT_TOKEN: u32 = 50257; const EOT_TOKEN: u32 = 50256; +const NO_SPEECH_TOKEN: u32 = 50361; +const NO_TIMESTAMP_TOKEN: u32 = 50362; #[derive(Parser, Debug)] #[command(author, version, about, long_about = None)] @@ -87,9 +89,9 @@ impl Decode { println!("audio features: {:?}", audio_features.dims()); let sample_len = model.config.n_text_ctx / 2; let mut sum_logprob = 0f64; - let no_speech_prob = f64::NAN; + let mut no_speech_prob = f64::NAN; let mut tokens = vec![SOT_TOKEN]; - for _i in 0..sample_len { + for i in 0..sample_len { let tokens_t = Tensor::new(tokens.as_slice(), &mel.device())?; // The model expects a batch dim but this inference loop does not handle @@ -97,10 +99,21 @@ impl Decode { let tokens_t = tokens_t.unsqueeze(0)?; let logits = model.decoder.forward(&tokens_t, &audio_features)?; let logits = logits.squeeze(0)?; + + // Extract the no speech probability on the first iteration by looking at the first + // token logits and the probability for the according token. + if i == 0 { + no_speech_prob = logits + .get(0)? + .softmax(0)? + .get(NO_SPEECH_TOKEN as usize)? + .to_scalar::()? as f64; + } + let (seq_len, _) = logits.shape().r2()?; let logits = logits.get(seq_len - 1)?; let next_token = if t > 0f64 { - let prs = (&logits / t)?.softmax(logits.rank() - 1)?; + let prs = (&logits / t)?.softmax(0)?; let logits_v: Vec = prs.to_vec1()?; let distr = rand::distributions::WeightedIndex::new(&logits_v)?; distr.sample(&mut self.rng) as u32 @@ -146,11 +159,16 @@ impl Decode { return dr; } // On errors, we try again with a different temperature. - if let Ok(dr) = dr { - let needs_fallback = dr.compression_ratio > COMPRESSION_RATIO_THRESHOLD - || dr.avg_logprob < LOGPROB_THRESHOLD; - if !needs_fallback || dr.no_speech_prob > NO_SPEECH_THRESHOLD { - return Ok(dr); + match dr { + Ok(dr) => { + let needs_fallback = dr.compression_ratio > COMPRESSION_RATIO_THRESHOLD + || dr.avg_logprob < LOGPROB_THRESHOLD; + if !needs_fallback || dr.no_speech_prob > NO_SPEECH_THRESHOLD { + return Ok(dr); + } + } + Err(err) => { + println!("Error running at {t}: {err}") } } } From 7a6bc6d2dcdc9b1fb485987444998dde5ecc4a5b Mon Sep 17 00:00:00 2001 From: laurent Date: Wed, 5 Jul 2023 09:54:12 +0100 Subject: [PATCH 28/36] Mel spectogram computation (fft bits). --- candle-examples/Cargo.toml | 1 + candle-examples/examples/whisper/audio.rs | 79 +++++++++++++++++++++++ candle-examples/examples/whisper/main.rs | 2 + 3 files changed, 82 insertions(+) create mode 100644 candle-examples/examples/whisper/audio.rs diff --git a/candle-examples/Cargo.toml b/candle-examples/Cargo.toml index a71ca17b..ca910441 100644 --- a/candle-examples/Cargo.toml +++ b/candle-examples/Cargo.toml @@ -12,6 +12,7 @@ readme = "README.md" [dependencies] candle = { path = "../candle-core", default-features=false } +num-traits = "0.2.15" [dev-dependencies] anyhow = { version = "1", features = ["backtrace"] } diff --git a/candle-examples/examples/whisper/audio.rs b/candle-examples/examples/whisper/audio.rs new file mode 100644 index 00000000..7ae5dd39 --- /dev/null +++ b/candle-examples/examples/whisper/audio.rs @@ -0,0 +1,79 @@ +// Audio processing code, adapted from whisper.cpp +// https://github.com/ggerganov/whisper.cpp + +trait Float: num_traits::Float + num_traits::FloatConst + num_traits::NumAssign {} + +// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2357 +fn fft(inp: &[T]) -> Vec { + let n = inp.len(); + let zero = T::zero(); + if n == 1 { + return vec![inp[0], zero]; + } + if n % 2 == 1 { + return dft(inp); + } + let mut out = vec![zero; n * 2]; + + let mut even = vec![]; + even.reserve(n / 2); + let mut odd = vec![]; + odd.reserve(n / 2); + + for (i, &inp) in inp.iter().enumerate() { + if i % 2 == 0 { + even.push(inp) + } else { + odd.push(inp); + } + } + + let even_fft = fft(&even); + let odd_fft = fft(&odd); + + let two_pi = T::PI() + T::PI(); + let n_t = T::from(n).unwrap(); + for k in 0..n / 2 { + let k_t = T::from(k).unwrap(); + let theta = two_pi * k_t / n_t; + let re = theta.cos(); + let im = -theta.sin(); + + let re_odd = odd_fft[2 * k]; + let im_odd = odd_fft[2 * k + 1]; + + out[2 * k] = even_fft[2 * k] + re * re_odd - im * im_odd; + out[2 * k + 1] = even_fft[2 * k + 1] + re * im_odd + im * re_odd; + + out[2 * (k + n / 2)] = even_fft[2 * k] - re * re_odd + im * im_odd; + out[2 * (k + n / 2) + 1] = even_fft[2 * k + 1] - re * im_odd - im * re_odd; + } + out +} + +// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2337 +fn dft(inp: &[T]) -> Vec { + let zero = T::zero(); + let n = inp.len(); + let two_pi = T::PI() + T::PI(); + + let mut out = Vec::new(); + out.reserve(2 * n); + let n_t = T::from(n).unwrap(); + for k in 0..n { + let k_t = T::from(k).unwrap(); + let mut re = zero; + let mut im = zero; + + for (j, &inp) in inp.iter().enumerate() { + let j_t = T::from(j).unwrap(); + let angle = two_pi * k_t * j_t / n_t; + re += inp * angle.cos(); + im -= inp * angle.sin(); + } + + out.push(re); + out.push(im); + } + out +} diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index c77118f6..f37f7ac7 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -10,6 +10,8 @@ use candle::{DType, Device, Tensor}; use clap::Parser; use rand::{distributions::Distribution, SeedableRng}; use tokenizers::Tokenizer; + +mod audio; mod model; use model::{Config, VarBuilder, Whisper}; From f4c8a196a8bc3a43fd9c51dca4182994d6af5912 Mon Sep 17 00:00:00 2001 From: laurent Date: Wed, 5 Jul 2023 10:14:20 +0100 Subject: [PATCH 29/36] Mel spectogram. --- candle-examples/examples/whisper/audio.rs | 66 +++++++++++++++++++++++ 1 file changed, 66 insertions(+) diff --git a/candle-examples/examples/whisper/audio.rs b/candle-examples/examples/whisper/audio.rs index 7ae5dd39..aca4607f 100644 --- a/candle-examples/examples/whisper/audio.rs +++ b/candle-examples/examples/whisper/audio.rs @@ -77,3 +77,69 @@ fn dft(inp: &[T]) -> Vec { } out } + +#[allow(clippy::too_many_arguments)] +// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2414 +fn log_mel_spectrogram_w( + ith: usize, + hann: &[T], + samples: &[T], + filters: &[T], + fft_size: usize, + fft_step: usize, + speed_up: bool, + n_len: usize, + n_mel: usize, + n_threads: usize, +) { + let n_fft = if speed_up { + 1 + fft_size / 4 + } else { + 1 + fft_size / 2 + }; + + let zero = T::zero(); + let half = T::from(0.5).unwrap(); + let mut fft_in = vec![zero; fft_size]; + let mut mel = vec![zero; n_len * n_mel]; + + for i in (ith..n_len).step_by(n_threads) { + let offset = i * fft_step; + + // apply Hanning window + for j in 0..fft_size { + fft_in[j] = if offset + j < samples.len() { + hann[j] * samples[offset + j] + } else { + zero + } + } + + // FFT -> mag^2 + let mut fft_out: Vec = fft(&fft_in); + + for j in 0..fft_size { + fft_out[j] = fft_out[2 * j] * fft_out[2 * j] + fft_out[2 * j + 1] * fft_out[2 * j + 1]; + } + for j in 1..fft_size / 2 { + let v = fft_out[fft_size - j]; + fft_out[j] += v; + } + + if speed_up { + // scale down in the frequency domain results in a speed up in the time domain + for j in 0..n_fft { + fft_out[j] = half * (fft_out[2 * j] + fft_out[2 * j + 1]); + } + } + + // mel spectrogram + for j in 0..n_mel { + let mut sum = zero; + for k in 0..n_fft { + sum += fft_out[k] * filters[j * n_fft + k]; + } + mel[j * n_len + i] = T::max(sum, T::from(1e-10).unwrap()).log10(); + } + } +} From dd1d55f5c7e95256fa784c4c4c75607f387c3c02 Mon Sep 17 00:00:00 2001 From: laurent Date: Wed, 5 Jul 2023 10:49:37 +0100 Subject: [PATCH 30/36] Mel spectogram computation. --- candle-examples/examples/whisper/audio.rs | 57 ++++++++++++++++++++++- 1 file changed, 56 insertions(+), 1 deletion(-) diff --git a/candle-examples/examples/whisper/audio.rs b/candle-examples/examples/whisper/audio.rs index aca4607f..4b5ed181 100644 --- a/candle-examples/examples/whisper/audio.rs +++ b/candle-examples/examples/whisper/audio.rs @@ -1,6 +1,8 @@ // Audio processing code, adapted from whisper.cpp // https://github.com/ggerganov/whisper.cpp +const WHISPER_CHUNK_SIZE: usize = 30; + trait Float: num_traits::Float + num_traits::FloatConst + num_traits::NumAssign {} // https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2357 @@ -91,7 +93,7 @@ fn log_mel_spectrogram_w( n_len: usize, n_mel: usize, n_threads: usize, -) { +) -> Vec { let n_fft = if speed_up { 1 + fft_size / 4 } else { @@ -142,4 +144,57 @@ fn log_mel_spectrogram_w( mel[j * n_len + i] = T::max(sum, T::from(1e-10).unwrap()).log10(); } } + mel +} + +fn log_mel_spectrogram( + samples: &[T], + filters: &[T], + fft_size: usize, + fft_step: usize, + n_mel: usize, + speed_up: bool, +) -> Vec { + let zero = T::zero(); + let two_pi = T::PI() + T::PI(); + let half = T::from(0.5).unwrap(); + let one = T::from(1.0).unwrap(); + let four = T::from(4.0).unwrap(); + let fft_size_t = T::from(fft_size).unwrap(); + + let hann: Vec = (0..fft_size) + .map(|i| half * (one - ((two_pi * T::from(i).unwrap()) / fft_size_t).cos())) + .collect(); + let n_len = samples.len() / fft_step; + + // pad audio with at least one extra chunk of zeros + let pad = 100 * WHISPER_CHUNK_SIZE / 2; + let n_len = if n_len % pad != 0 { + (n_len / pad + 1) * pad + } else { + n_len + }; + let n_len = n_len + pad; + let samples = { + let mut samples_padded = samples.to_vec(); + let to_add = n_len * fft_step - samples.len(); + samples_padded.extend(std::iter::repeat(zero).take(to_add)); + samples_padded + }; + + // Use a single thread for now. + let mut mel = log_mel_spectrogram_w( + 0, &hann, &samples, filters, fft_size, fft_step, speed_up, n_len, n_mel, 1, + ); + let mmax = mel + .iter() + .max_by(|&u, &v| u.partial_cmp(v).unwrap_or(std::cmp::Ordering::Greater)) + .copied() + .unwrap_or(zero) + - T::from(8).unwrap(); + for m in mel.iter_mut() { + let v = T::max(*m, mmax); + *m = v / four + one + } + mel } From 648d1511d5b077a503caa9d8c6a947f19ce1ea20 Mon Sep 17 00:00:00 2001 From: laurent Date: Wed, 5 Jul 2023 11:02:49 +0100 Subject: [PATCH 31/36] PCM conversion. --- candle-examples/examples/whisper/audio.rs | 26 ++++++++++++++++++++++- 1 file changed, 25 insertions(+), 1 deletion(-) diff --git a/candle-examples/examples/whisper/audio.rs b/candle-examples/examples/whisper/audio.rs index 4b5ed181..64858141 100644 --- a/candle-examples/examples/whisper/audio.rs +++ b/candle-examples/examples/whisper/audio.rs @@ -1,6 +1,10 @@ // Audio processing code, adapted from whisper.cpp // https://github.com/ggerganov/whisper.cpp +const WHISPER_SAMPLE_RATE: usize = 16000; +const WHISPER_N_FFT: usize = 400; +const WHISPER_N_MEL: usize = 80; +const WHISPER_HOP_LENGTH: usize = 160; const WHISPER_CHUNK_SIZE: usize = 30; trait Float: num_traits::Float + num_traits::FloatConst + num_traits::NumAssign {} @@ -147,7 +151,7 @@ fn log_mel_spectrogram_w( mel } -fn log_mel_spectrogram( +fn log_mel_spectrogram_( samples: &[T], filters: &[T], fft_size: usize, @@ -198,3 +202,23 @@ fn log_mel_spectrogram( } mel } + +fn pcm_to_mel(samples: &[T], filters: &[T]) -> anyhow::Result> { + if filters.len() != WHISPER_N_MEL * WHISPER_N_FFT { + anyhow::bail!( + "unexpected filter length {} (n_mel: {}, n_fft: {})", + filters.len(), + WHISPER_N_MEL, + WHISPER_N_FFT + ) + } + let mel = log_mel_spectrogram_( + samples, + filters, + WHISPER_N_FFT, + WHISPER_HOP_LENGTH, + WHISPER_N_MEL, + false, + ); + Ok(mel) +} From c701ee33a7a457cfa46f27a0cbf618186993e281 Mon Sep 17 00:00:00 2001 From: laurent Date: Wed, 5 Jul 2023 11:05:08 +0100 Subject: [PATCH 32/36] Add the mel filters. --- .../examples/whisper/mel_filters.safetensors | Bin 0 -> 64400 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 candle-examples/examples/whisper/mel_filters.safetensors diff --git a/candle-examples/examples/whisper/mel_filters.safetensors b/candle-examples/examples/whisper/mel_filters.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..98f3af4498d37fc529b1dbcf17044ae4ae187f2c GIT binary patch literal 64400 zcmeI*dsNT&9|!Qnax0g}?I%$#Z9;t`^?tsM6|HT<&u{?xnve?L2ib9`Q((>brlc|Onk^ZoWc`N-^_ zuSNDV1A-^HJKKvz_Wq%t&Izy=_8+<$?49gQLB==#8t3lpWN>zw;AHP_3^h)g9T;c| z2sKq+cXo2?>1uGE5EjY`Py4h+`7AGwlT`f6gdxzX})HLlA%h3W1#3Kk_xa z!iOUYyb;)#a*;h@6eyq&2n~rAU-+J2PZUNRQNYP%0KzS@*b_#90t$f(KPF@L{;lkZ z!iXaZ)N6Vh#-P>g38O#(g}|21&E&||k?e`Wh$9LdIq6#YnU$&R38O#(g}_f!d}Q!r zPxeG%#1RFan9ZyFY?nQI!YEKcArSk0tTg1*VowxC98q9HyTr=RK<4r@kcSIYx_AtG!YEKcA<(<&9$AqZ%$_KWIHJJ0d)s9<%Ov)MQJ{cA zz%OLIEU~!6o+yksqCj-XQn~IDf7c3=KmnCN|9!*d_LzSB`H2dNGwlVg#kG`)V@>Rd z_DLXsN?_UjEIcS(E9*wP^EHYJiZiVROqplI;#1MGQKxeDMC&AQ`RW96oO{bt_xkhM zt2!vowHCO1G!Ic3%VqZMIG!n5CxOeW1cpBUOf16)dAETb&lD9DXW9!G9+to~$t2xN z;(4ZMp9TU{C2;!M0g>t|<-B2?WUZn?kE-tDbqeS%kUVTR=FSX}vFnO>rsy69?ynT+ zv9+$e*yUq6vrZ(tqLkuLX8}KBV|;hDvwUZTgS>LdhF#G)4BTBQFnV1W{Bqo7>D~s? zB{7r#--A+%L!AZU%fE($Utj6z{S3c)MX@V7hk?5*1rEMQL(&Q6=C|q~T~p0vKO0xRwpVI#sI$QChemv2 z*HCuv*hC5}Wmj|#19w*nltx>lp7%|p#dMHid71d++EhM=DaAO{Rbc1_A2D`B8cx;y zmwXX&3*Xzg@odpG4BWd~fyCUA$m{q3e@(KIi)STaR_Pp`E!C>=1|0?J?AapLzu1CN zr>x|WnK$5a$A@Q&jzQqgH4<35uq%>>=D`@zRJKpwhu7)N*_Rs0@h05_mN=~QcG3Ar z1P%mj5QR%4FxBxgdOf&B^Wucv^I**Qr~pTgmg1511`IrB z&DSqA(&J6K3FMysKwLZXF;1=8jh6m@U_fFTN>ciuVz4967~R6aeXA9i@Z8|>(xo-t z+qedPi9f-q))8cmF~Mp|5&KfD9&gZ5pu*yiX!e;AzEOM7>UlA0XMKe$#ReSfJc6Ck zF%aBYDKLCnk%v!sb3Aldj_i6T@#K6CqIxcYy<0=vYQ2lU`$eh8p^gF-6QhLrQv*DI zUWKUsXYk;38tm%_pvdfza9q@vozXEA+*v8`!}cBG!hk-wdSx{(G|$I}?Ki{X$T+;1 z|4@9JpTN#2^*Gc~V2kZe@gUy~QO8!Gne8FW@3#qigN;}`x(-@2wdLy>9YevLl>*)K zR*Cp|_NZHLG5VfQ$DsTaG#GC}#Jje*``}A!-8D)?QsuY!M2J;LR{h*?<<8f>2P_ z4o_e05ak9J_NGcf4s;ZVS=&{VG$|3eT|E%fWeJ=QBx6uAHBDNvO_-TIS-Z(g}*b`p4z5{5r=H=+1!G`blEBjcPUyuaHh0^3aHc~cc2uWKnF zr%n|6di^R&lU(rUH?y$hLIV0`M&o+gaP%p+fmpOp{AFj(_XV^}2bZo&U{_;jkzi3E z(#>sAKhhW3X3KFfCKl#d6A|y@h~D>aiA@t{iRjMT`K(qIBCl&Fkhe9*qj2zg@#y#0 zB4$uee3cXgp9OIUm>Y^GtvvDh(Z=X?E=Ob;oOtGFmkuth5(szhA+AUKR~*i=L|m6X zn2l_DNBZkD`CgP9$PCcsPKTi z5{Q9kBM}!g7Ar*$thTI!&WCpk?_4(#ncAMuY+5CR%T^^YYFUwc^qqcUcwCnFk56s% zy6J>Nv;E-tG6GKyk4Nw0J+bhlCFaH#h}&IF;(W+9zQI?0)ZkoJjRY@!de&yYT^D6}LsF&A*AkD^o?OS#R-6R73VhyOeO@w+T2MkMY=4 z<}G{G57fF_BKpj z(@tPWae>Fh`$6LM{C#5Wf~Uep+G4VN9~p8I8V(x*t1r8u(OE0Bv%V_q;*x|{b0ONf z1oQmSE-762Z31%OF^?%z#)>t=)5YW2cSXiPYm6^;Mx$xN5Pp3KR?c%qvSl+&A6O<< R&f6uX51di?r|j?k{12c*uoM6Q literal 0 HcmV?d00001 From 26d1a7803fd143bf92b56c5470208ecc029be979 Mon Sep 17 00:00:00 2001 From: laurent Date: Wed, 5 Jul 2023 11:20:33 +0100 Subject: [PATCH 33/36] Load the mel filters. --- candle-examples/examples/whisper/main.rs | 11 +++++++++++ 1 file changed, 11 insertions(+) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index f37f7ac7..66bde0e8 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -59,6 +59,12 @@ struct Args { /// The seed to use when generating random samples. #[arg(long, default_value_t = 299792458)] seed: u64, + + #[arg( + long, + default_value = "candle-examples/examples/whisper/mel_filters.safetensors" + )] + filters: String, } #[derive(Debug, Clone)] @@ -189,6 +195,11 @@ fn main() -> Result<()> { let tokenizer = Tokenizer::from_file(args.tokenizer_config).map_err(E::msg)?; + let filters = unsafe { candle::safetensors::MmapedFile::new(args.filters)? }; + let filters = filters.deserialize()?; + let filters = filters.tensor("mel_80", &device)?; + println!("loaded mel filters {:?}", filters.shape()); + let input = unsafe { candle::safetensors::MmapedFile::new(args.input)? }; let input = input.deserialize()?; let mel = input.tensor("mel", &device)?; From 95f378ebb41bdf5abbdb71167e3df9eab14789df Mon Sep 17 00:00:00 2001 From: laurent Date: Wed, 5 Jul 2023 11:53:58 +0100 Subject: [PATCH 34/36] Read wav files. --- candle-examples/Cargo.toml | 1 + candle-examples/examples/whisper/audio.rs | 17 +++-- candle-examples/examples/whisper/main.rs | 84 ++++++++++++++--------- 3 files changed, 61 insertions(+), 41 deletions(-) diff --git a/candle-examples/Cargo.toml b/candle-examples/Cargo.toml index ca910441..a3e64a17 100644 --- a/candle-examples/Cargo.toml +++ b/candle-examples/Cargo.toml @@ -21,6 +21,7 @@ clap = { version = "4.2.4", features = ["derive"] } rand = "0.8.5" tokenizers = { version = "0.13.3", default-features=false, features=["onig"] } tokio = { version = "1.28.2", features = ["macros", "rt-multi-thread"] } +wav = "1.0.0" [features] default = ["cuda"] diff --git a/candle-examples/examples/whisper/audio.rs b/candle-examples/examples/whisper/audio.rs index 64858141..dbf5d2c0 100644 --- a/candle-examples/examples/whisper/audio.rs +++ b/candle-examples/examples/whisper/audio.rs @@ -1,13 +1,16 @@ // Audio processing code, adapted from whisper.cpp // https://github.com/ggerganov/whisper.cpp -const WHISPER_SAMPLE_RATE: usize = 16000; -const WHISPER_N_FFT: usize = 400; -const WHISPER_N_MEL: usize = 80; -const WHISPER_HOP_LENGTH: usize = 160; -const WHISPER_CHUNK_SIZE: usize = 30; +pub const WHISPER_SAMPLE_RATE: usize = 16000; +pub const WHISPER_N_FFT: usize = 400; +pub const WHISPER_N_MEL: usize = 80; +pub const WHISPER_HOP_LENGTH: usize = 160; +pub const WHISPER_CHUNK_SIZE: usize = 30; -trait Float: num_traits::Float + num_traits::FloatConst + num_traits::NumAssign {} +pub trait Float: num_traits::Float + num_traits::FloatConst + num_traits::NumAssign {} + +impl Float for f32 {} +impl Float for f64 {} // https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2357 fn fft(inp: &[T]) -> Vec { @@ -203,7 +206,7 @@ fn log_mel_spectrogram_( mel } -fn pcm_to_mel(samples: &[T], filters: &[T]) -> anyhow::Result> { +pub fn pcm_to_mel(samples: &[T], filters: &[T]) -> anyhow::Result> { if filters.len() != WHISPER_N_MEL * WHISPER_N_FFT { anyhow::bail!( "unexpected filter length {} (n_mel: {}, n_fft: {})", diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 66bde0e8..231feac8 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -40,33 +40,6 @@ const EOT_TOKEN: u32 = 50256; const NO_SPEECH_TOKEN: u32 = 50361; const NO_TIMESTAMP_TOKEN: u32 = 50362; -#[derive(Parser, Debug)] -#[command(author, version, about, long_about = None)] -struct Args { - /// Run on CPU rather than on GPU. - #[arg(long)] - cpu: bool, - - #[arg(long)] - weights: String, - - #[arg(long)] - input: String, - - #[arg(long)] - tokenizer_config: String, - - /// The seed to use when generating random samples. - #[arg(long, default_value_t = 299792458)] - seed: u64, - - #[arg( - long, - default_value = "candle-examples/examples/whisper/mel_filters.safetensors" - )] - filters: String, -} - #[derive(Debug, Clone)] struct DecodingResult { tokens: Vec, @@ -184,6 +157,35 @@ impl Decode { } } +#[derive(Parser, Debug)] +#[command(author, version, about, long_about = None)] +struct Args { + /// Run on CPU rather than on GPU. + #[arg(long)] + cpu: bool, + + #[arg(long)] + weights: String, + + /// The input to be processed, in wav formats. + #[arg(long)] + input: String, + + #[arg(long)] + tokenizer_config: String, + + /// The seed to use when generating random samples. + #[arg(long, default_value_t = 299792458)] + seed: u64, + + /// The mel filters in safetensors format. + #[arg( + long, + default_value = "candle-examples/examples/whisper/mel_filters.safetensors" + )] + filters: String, +} + fn main() -> Result<()> { let args = Args::parse(); let device = if args.cpu { @@ -195,14 +197,28 @@ fn main() -> Result<()> { let tokenizer = Tokenizer::from_file(args.tokenizer_config).map_err(E::msg)?; - let filters = unsafe { candle::safetensors::MmapedFile::new(args.filters)? }; - let filters = filters.deserialize()?; - let filters = filters.tensor("mel_80", &device)?; - println!("loaded mel filters {:?}", filters.shape()); + let mel_filters = unsafe { candle::safetensors::MmapedFile::new(args.filters)? }; + let mel_filters = mel_filters.deserialize()?; + let mel_filters = mel_filters.tensor("mel_80", &device)?; + println!("loaded mel filters {:?}", mel_filters.shape()); + let mel_filters = mel_filters.flatten_all()?.to_vec1::()?; - let input = unsafe { candle::safetensors::MmapedFile::new(args.input)? }; - let input = input.deserialize()?; - let mel = input.tensor("mel", &device)?; + let mut input = std::fs::File::open(args.input)?; + let (header, data) = wav::read(&mut input)?; + println!("loaded wav data: {header:?}"); + if header.sampling_rate != audio::WHISPER_SAMPLE_RATE as u32 { + anyhow::bail!( + "wav file must have a {} sampling rate", + audio::WHISPER_SAMPLE_RATE + ) + } + let data = data.as_sixteen().expect("expected 16 bit wav file"); + let pcm_data: Vec<_> = data[..data.len() / header.channel_count as usize] + .iter() + .map(|v| *v as f32 / 32768.) + .collect(); + let mel = audio::pcm_to_mel(&pcm_data, &mel_filters)?; + let mel = Tensor::new(&mel[..], &device)?; println!("loaded mel: {:?}", mel.dims()); let weights = unsafe { candle::safetensors::MmapedFile::new(args.weights)? }; From 63e5a266bf749933fbc0f7f907d2d48f8fe1e1ba Mon Sep 17 00:00:00 2001 From: laurent Date: Wed, 5 Jul 2023 12:19:21 +0100 Subject: [PATCH 35/36] Put everything together. --- candle-examples/examples/whisper/audio.rs | 30 +++++++++-------------- candle-examples/examples/whisper/main.rs | 13 +++++----- 2 files changed, 17 insertions(+), 26 deletions(-) diff --git a/candle-examples/examples/whisper/audio.rs b/candle-examples/examples/whisper/audio.rs index dbf5d2c0..d50b7923 100644 --- a/candle-examples/examples/whisper/audio.rs +++ b/candle-examples/examples/whisper/audio.rs @@ -1,12 +1,6 @@ // Audio processing code, adapted from whisper.cpp // https://github.com/ggerganov/whisper.cpp -pub const WHISPER_SAMPLE_RATE: usize = 16000; -pub const WHISPER_N_FFT: usize = 400; -pub const WHISPER_N_MEL: usize = 80; -pub const WHISPER_HOP_LENGTH: usize = 160; -pub const WHISPER_CHUNK_SIZE: usize = 30; - pub trait Float: num_traits::Float + num_traits::FloatConst + num_traits::NumAssign {} impl Float for f32 {} @@ -175,7 +169,7 @@ fn log_mel_spectrogram_( let n_len = samples.len() / fft_step; // pad audio with at least one extra chunk of zeros - let pad = 100 * WHISPER_CHUNK_SIZE / 2; + let pad = 100 * super::CHUNK_LENGTH / 2; let n_len = if n_len % pad != 0 { (n_len / pad + 1) * pad } else { @@ -206,22 +200,20 @@ fn log_mel_spectrogram_( mel } -pub fn pcm_to_mel(samples: &[T], filters: &[T]) -> anyhow::Result> { - if filters.len() != WHISPER_N_MEL * WHISPER_N_FFT { +pub fn pcm_to_mel( + samples: &[T], + filters: &[T], + n_mel: usize, + n_fft: usize, +) -> anyhow::Result> { + if filters.len() != n_mel * n_fft { anyhow::bail!( "unexpected filter length {} (n_mel: {}, n_fft: {})", filters.len(), - WHISPER_N_MEL, - WHISPER_N_FFT + n_mel, + n_fft ) } - let mel = log_mel_spectrogram_( - samples, - filters, - WHISPER_N_FFT, - WHISPER_HOP_LENGTH, - WHISPER_N_MEL, - false, - ); + let mel = log_mel_spectrogram_(samples, filters, n_fft, super::HOP_LENGTH, n_mel, false); Ok(mel) } diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 231feac8..6e15fa8a 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -201,24 +201,23 @@ fn main() -> Result<()> { let mel_filters = mel_filters.deserialize()?; let mel_filters = mel_filters.tensor("mel_80", &device)?; println!("loaded mel filters {:?}", mel_filters.shape()); + let (n_mel, n_fft) = mel_filters.shape().r2()?; let mel_filters = mel_filters.flatten_all()?.to_vec1::()?; let mut input = std::fs::File::open(args.input)?; let (header, data) = wav::read(&mut input)?; println!("loaded wav data: {header:?}"); - if header.sampling_rate != audio::WHISPER_SAMPLE_RATE as u32 { - anyhow::bail!( - "wav file must have a {} sampling rate", - audio::WHISPER_SAMPLE_RATE - ) + if header.sampling_rate != SAMPLE_RATE as u32 { + anyhow::bail!("wav file must have a {} sampling rate", SAMPLE_RATE) } let data = data.as_sixteen().expect("expected 16 bit wav file"); let pcm_data: Vec<_> = data[..data.len() / header.channel_count as usize] .iter() .map(|v| *v as f32 / 32768.) .collect(); - let mel = audio::pcm_to_mel(&pcm_data, &mel_filters)?; - let mel = Tensor::new(&mel[..], &device)?; + let mel = audio::pcm_to_mel(&pcm_data, &mel_filters, n_mel, n_fft)?; + let mel_len = mel.len(); + let mel = Tensor::from_vec(mel, (1, n_mel, mel_len / n_mel), &device)?; println!("loaded mel: {:?}", mel.dims()); let weights = unsafe { candle::safetensors::MmapedFile::new(args.weights)? }; From d560855c2a9abb0556077fcd62b6bd773e22da5c Mon Sep 17 00:00:00 2001 From: laurent Date: Wed, 5 Jul 2023 12:56:04 +0100 Subject: [PATCH 36/36] Bugfix for the mel filters. --- candle-examples/examples/whisper/audio.rs | 23 ++++++++++------------- candle-examples/examples/whisper/main.rs | 6 +++--- 2 files changed, 13 insertions(+), 16 deletions(-) diff --git a/candle-examples/examples/whisper/audio.rs b/candle-examples/examples/whisper/audio.rs index d50b7923..d095e239 100644 --- a/candle-examples/examples/whisper/audio.rs +++ b/candle-examples/examples/whisper/audio.rs @@ -148,7 +148,7 @@ fn log_mel_spectrogram_w( mel } -fn log_mel_spectrogram_( +fn log_mel_spectrogram_( samples: &[T], filters: &[T], fft_size: usize, @@ -200,20 +200,17 @@ fn log_mel_spectrogram_( mel } -pub fn pcm_to_mel( +pub fn pcm_to_mel( samples: &[T], filters: &[T], - n_mel: usize, - n_fft: usize, ) -> anyhow::Result> { - if filters.len() != n_mel * n_fft { - anyhow::bail!( - "unexpected filter length {} (n_mel: {}, n_fft: {})", - filters.len(), - n_mel, - n_fft - ) - } - let mel = log_mel_spectrogram_(samples, filters, n_fft, super::HOP_LENGTH, n_mel, false); + let mel = log_mel_spectrogram_( + samples, + filters, + super::N_FFT, + super::HOP_LENGTH, + super::N_MELS, + false, + ); Ok(mel) } diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 6e15fa8a..6ea3e536 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -201,7 +201,6 @@ fn main() -> Result<()> { let mel_filters = mel_filters.deserialize()?; let mel_filters = mel_filters.tensor("mel_80", &device)?; println!("loaded mel filters {:?}", mel_filters.shape()); - let (n_mel, n_fft) = mel_filters.shape().r2()?; let mel_filters = mel_filters.flatten_all()?.to_vec1::()?; let mut input = std::fs::File::open(args.input)?; @@ -215,9 +214,10 @@ fn main() -> Result<()> { .iter() .map(|v| *v as f32 / 32768.) .collect(); - let mel = audio::pcm_to_mel(&pcm_data, &mel_filters, n_mel, n_fft)?; + println!("pcm data loaded {}", pcm_data.len()); + let mel = audio::pcm_to_mel(&pcm_data, &mel_filters)?; let mel_len = mel.len(); - let mel = Tensor::from_vec(mel, (1, n_mel, mel_len / n_mel), &device)?; + let mel = Tensor::from_vec(mel, (1, N_MELS, mel_len / N_MELS), &device)?; println!("loaded mel: {:?}", mel.dims()); let weights = unsafe { candle::safetensors::MmapedFile::new(args.weights)? };