mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
Merge branch 'main' into remove_wrapper
This commit is contained in:
@ -4,9 +4,9 @@ mod model;
|
||||
|
||||
use anyhow::{anyhow, Error as E, Result};
|
||||
use candle::Tensor;
|
||||
use candle_hub::{api::sync::Api, Cache, Repo, RepoType};
|
||||
use candle_nn::VarBuilder;
|
||||
use clap::Parser;
|
||||
use hf_hub::{api::sync::Api, Cache, Repo, RepoType};
|
||||
use model::{BertModel, Config, DTYPE};
|
||||
use tokenizers::{PaddingParams, Tokenizer};
|
||||
|
||||
|
@ -5,10 +5,10 @@ extern crate intel_mkl_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_hub::{api::sync::Api, Repo, RepoType};
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use clap::Parser;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
mod model;
|
||||
|
@ -16,9 +16,9 @@ use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle::{DType, Device, Tensor, D};
|
||||
use candle_hub::{api::sync::Api, Repo, RepoType};
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
|
||||
mod model;
|
||||
use model::{Config, Llama};
|
||||
|
44
candle-examples/examples/simple-training/main.rs
Normal file
44
candle-examples/examples/simple-training/main.rs
Normal file
@ -0,0 +1,44 @@
|
||||
// This should rearch 91.5% accuracy.
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
use anyhow::Result;
|
||||
use candle::{DType, Var, D};
|
||||
|
||||
const IMAGE_DIM: usize = 784;
|
||||
const LABELS: usize = 10;
|
||||
|
||||
pub fn main() -> Result<()> {
|
||||
let dev = candle::Device::cuda_if_available(0)?;
|
||||
let m = candle_nn::vision::mnist::load_dir("data")?;
|
||||
println!("train-images: {:?}", m.train_images.shape());
|
||||
println!("train-labels: {:?}", m.train_labels.shape());
|
||||
println!("test-images: {:?}", m.test_images.shape());
|
||||
println!("test-labels: {:?}", m.test_labels.shape());
|
||||
let ws = Var::zeros((IMAGE_DIM, LABELS), DType::F32, &dev)?;
|
||||
let bs = Var::zeros(LABELS, DType::F32, &dev)?;
|
||||
let sgd = candle_nn::SGD::new(&[&ws, &bs], 0.1);
|
||||
for epoch in 1..200 {
|
||||
let logits = m.train_images.matmul(&ws)?.broadcast_add(&bs)?;
|
||||
let loss = logits.softmax(D::Minus1)?;
|
||||
// TODO: log_softmax + let loss = loss.nll_loss(&m.train_labels);
|
||||
sgd.backward_step(&loss)?;
|
||||
|
||||
let _test_logits = m.test_images.matmul(&ws)?.broadcast_add(&bs)?;
|
||||
/* TODO
|
||||
let test_accuracy = test_logits
|
||||
.argmax(Some(-1), false)
|
||||
.eq_tensor(&m.test_labels)
|
||||
.to_kind(Kind::Float)
|
||||
.mean(Kind::Float)
|
||||
.double_value(&[]);
|
||||
*/
|
||||
let test_accuracy = 0.;
|
||||
println!(
|
||||
"{epoch:4} train loss: {:8.5} test acc: {:5.2}%",
|
||||
loss.to_scalar::<f32>()?,
|
||||
100. * test_accuracy
|
||||
)
|
||||
}
|
||||
Ok(())
|
||||
}
|
@ -11,9 +11,9 @@ extern crate intel_mkl_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use candle::{safetensors::Load, DType, Device, Tensor};
|
||||
use candle_hub::{api::sync::Api, Repo, RepoType};
|
||||
use candle_nn::VarBuilder;
|
||||
use clap::Parser;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use rand::{distributions::Distribution, SeedableRng};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
|
Reference in New Issue
Block a user