EfficientVit (MSRA) model (#1783)

* Add EfficientVit (Microsoft Research Asia) model.

* Mention models in README
This commit is contained in:
Jani Monoses
2024-03-01 09:53:52 +02:00
committed by GitHub
parent b485e4b6ee
commit 979deaca07
5 changed files with 581 additions and 1 deletions

View File

@ -0,0 +1,20 @@
# candle-efficientvit
[EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention](https://arxiv.org/abs/2305.07027).
This candle implementation uses a pre-trained EfficientViT (from Microsoft Research Asia) network for inference.
The classification head has been trained on the ImageNet dataset and returns the probabilities for the top-5 classes.
## Running an example
```
$ cargo run --example efficientvit --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg --which m1
loaded image Tensor[dims 3, 224, 224; f32]
model built
mountain bike, all-terrain bike, off-roader: 69.80%
unicycle, monocycle : 13.03%
bicycle-built-for-two, tandem bicycle, tandem: 9.28%
crash helmet : 2.25%
alp : 0.46%
```

View File

@ -0,0 +1,99 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use clap::{Parser, ValueEnum};
use candle::{DType, IndexOp, D};
use candle_nn::{Module, VarBuilder};
use candle_transformers::models::efficientvit;
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Which {
M0,
M1,
M2,
M3,
M4,
M5,
}
impl Which {
fn model_filename(&self) -> String {
let name = match self {
Self::M0 => "m0",
Self::M1 => "m1",
Self::M2 => "m2",
Self::M3 => "m3",
Self::M4 => "m4",
Self::M5 => "m5",
};
format!("timm/efficientvit_{}.r224_in1k", name)
}
fn config(&self) -> efficientvit::Config {
match self {
Self::M0 => efficientvit::Config::m0(),
Self::M1 => efficientvit::Config::m1(),
Self::M2 => efficientvit::Config::m2(),
Self::M3 => efficientvit::Config::m3(),
Self::M4 => efficientvit::Config::m4(),
Self::M5 => efficientvit::Config::m5(),
}
}
}
#[derive(Parser)]
struct Args {
#[arg(long)]
model: Option<String>,
#[arg(long)]
image: String,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
#[arg(value_enum, long, default_value_t=Which::M0)]
which: Which,
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let device = candle_examples::device(args.cpu)?;
let image = candle_examples::imagenet::load_image224(args.image)?;
println!("loaded image {image:?}");
let model_file = match args.model {
None => {
let model_name = args.which.model_filename();
let api = hf_hub::api::sync::Api::new()?;
let api = api.model(model_name);
api.get("model.safetensors")?
}
Some(model) => model.into(),
};
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
let model = efficientvit::efficientvit(&args.which.config(), 1000, vb)?;
println!("model built");
let logits = model.forward(&image.unsqueeze(0)?)?;
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
.i(0)?
.to_vec1::<f32>()?;
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
for &(category_idx, pr) in prs.iter().take(5) {
println!(
"{:24}: {:.2}%",
candle_examples::imagenet::CLASSES[category_idx],
100. * pr
);
}
Ok(())
}