Use shape with holes. (#771)

This commit is contained in:
Laurent Mazare
2023-09-08 08:50:27 +01:00
committed by GitHub
parent 0e250aee4f
commit 989a4807b1
3 changed files with 7 additions and 7 deletions

View File

@ -123,7 +123,7 @@ fn get_rel_pos(q_size: usize, k_size: usize, rel_pos: &Tensor) -> Result<Tensor>
let relative_coords = relative_coords.to_dtype(DType::U32)?; let relative_coords = relative_coords.to_dtype(DType::U32)?;
rel_pos_resized rel_pos_resized
.index_select(&relative_coords.reshape(d1 * d2)?, 0)? .index_select(&relative_coords.reshape(d1 * d2)?, 0)?
.reshape((d1, d2, rel_pos_resized.dim(1)?)) .reshape((d1, d2, ()))
} }
impl Module for Attention { impl Module for Attention {
@ -243,7 +243,7 @@ fn window_unpartition(
))? ))?
.transpose(2, 3)? .transpose(2, 3)?
.contiguous()? .contiguous()?
.reshape((b, h_p, w_p, windows.elem_count() / b / h_p / w_p))?; .reshape((b, h_p, w_p, ()))?;
let xs = if h_p > h { xs.narrow(1, 0, h)? } else { xs }; let xs = if h_p > h { xs.narrow(1, 0, h)? } else { xs };
let xs = if w_p > w { xs.narrow(2, 0, w)? } else { xs }; let xs = if w_p > w { xs.narrow(2, 0, w)? } else { xs };
Ok(xs) Ok(xs)

View File

@ -214,7 +214,7 @@ impl MaskDecoder {
let hyper_in = Tensor::stack(hyper_in_list.as_slice(), 1)?; let hyper_in = Tensor::stack(hyper_in_list.as_slice(), 1)?;
let (b, c, h, w) = upscaled_embedding.dims4()?; let (b, c, h, w) = upscaled_embedding.dims4()?;
let masks = hyper_in.matmul(&upscaled_embedding.reshape((b, c, h * w))?)?; let masks = hyper_in.matmul(&upscaled_embedding.reshape((b, c, h * w))?)?;
let masks = masks.reshape((b, masks.elem_count() / b / h / w, h, w))?; let masks = masks.reshape((b, (), h, w))?;
// Generate mask quality predictions. // Generate mask quality predictions.
let iou_pred = self.iou_prediction_head.forward(&iou_token_out)?; let iou_pred = self.iou_prediction_head.forward(&iou_token_out)?;

View File

@ -28,10 +28,10 @@ impl PostionEmbeddingRandom {
let x_embed = (Tensor::arange(0u32, w as u32, device)?.to_dtype(DType::F32)? + 0.5)?; let x_embed = (Tensor::arange(0u32, w as u32, device)?.to_dtype(DType::F32)? + 0.5)?;
let y_embed = (Tensor::arange(0u32, h as u32, device)?.to_dtype(DType::F32)? + 0.5)?; let y_embed = (Tensor::arange(0u32, h as u32, device)?.to_dtype(DType::F32)? + 0.5)?;
let x_embed = (x_embed / w as f64)? let x_embed = (x_embed / w as f64)?
.reshape((1, w))? .reshape((1, ()))?
.broadcast_as((h, w))?; .broadcast_as((h, w))?;
let y_embed = (y_embed / h as f64)? let y_embed = (y_embed / h as f64)?
.reshape((h, 1))? .reshape(((), 1))?
.broadcast_as((h, w))?; .broadcast_as((h, w))?;
let coords = Tensor::stack(&[&x_embed, &y_embed], D::Minus1)?; let coords = Tensor::stack(&[&x_embed, &y_embed], D::Minus1)?;
self.pe_encoding(&coords)?.permute((2, 0, 1)) self.pe_encoding(&coords)?.permute((2, 0, 1))
@ -163,7 +163,7 @@ impl PromptEncoder {
fn embed_boxes(&self, boxes: &Tensor) -> Result<Tensor> { fn embed_boxes(&self, boxes: &Tensor) -> Result<Tensor> {
let boxes = (boxes + 0.5)?; let boxes = (boxes + 0.5)?;
let coords = boxes.reshape((boxes.elem_count() / 4, 2, 2))?; let coords = boxes.reshape(((), 2, 2))?;
let corner_embedding = self let corner_embedding = self
.pe_layer .pe_layer
.forward_with_coords(&coords, self.input_image_size)?; .forward_with_coords(&coords, self.input_image_size)?;
@ -200,7 +200,7 @@ impl PromptEncoder {
let dense_embeddings = match masks { let dense_embeddings = match masks {
None => { None => {
let emb = self.no_mask_embed.embeddings(); let emb = self.no_mask_embed.embeddings();
emb.reshape((1, emb.elem_count(), 1, 1))?.expand(( emb.reshape((1, (), 1, 1))?.expand((
1, 1,
emb.elem_count(), emb.elem_count(),
self.image_embedding_size.0, self.image_embedding_size.0,