mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 11:08:52 +00:00
Tracing mode for T5. (#913)
* Tracing mode for T5. * Tracing for the linear layer.
This commit is contained in:
@ -1,11 +1,32 @@
|
||||
// T5 Text Encoder
|
||||
// https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py
|
||||
|
||||
use candle::{DType, Device, Result, Tensor, D};
|
||||
use candle_nn::{embedding, linear_no_bias, Activation, Embedding, Linear, Module, VarBuilder};
|
||||
use candle::{DType, Device, Module, Result, Tensor, D};
|
||||
use candle_nn::{embedding, Activation, Embedding, VarBuilder};
|
||||
use serde::Deserialize;
|
||||
use std::sync::Arc;
|
||||
|
||||
#[derive(Debug)]
|
||||
struct Linear {
|
||||
inner: candle_nn::Linear,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl Linear {
|
||||
fn new(d1: usize, d2: usize, vb: VarBuilder) -> Result<Self> {
|
||||
let inner = candle_nn::linear_no_bias(d1, d2, vb)?;
|
||||
let span = tracing::span!(tracing::Level::TRACE, "linear");
|
||||
Ok(Self { inner, span })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for Linear {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
self.inner.forward(xs)
|
||||
}
|
||||
}
|
||||
|
||||
fn default_relative_attention_max_distance() -> usize {
|
||||
128
|
||||
}
|
||||
@ -121,6 +142,7 @@ impl Config {
|
||||
struct T5LayerNorm {
|
||||
weight: Tensor,
|
||||
variance_epsilon: f64,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl T5LayerNorm {
|
||||
@ -129,10 +151,14 @@ impl T5LayerNorm {
|
||||
Ok(Self {
|
||||
weight,
|
||||
variance_epsilon: eps,
|
||||
span: tracing::span!(tracing::Level::TRACE, "layer-norm"),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for T5LayerNorm {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let dtype = xs.dtype();
|
||||
let xs_f32 = xs.to_dtype(DType::F32)?;
|
||||
// variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
||||
@ -149,20 +175,25 @@ struct T5DenseActDense {
|
||||
wi: Linear,
|
||||
wo: Linear,
|
||||
act: Activation,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl T5DenseActDense {
|
||||
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let wi = linear_no_bias(cfg.d_model, cfg.d_ff, vb.pp("wi"))?;
|
||||
let wo = linear_no_bias(cfg.d_ff, cfg.d_model, vb.pp("wo"))?;
|
||||
let wi = Linear::new(cfg.d_model, cfg.d_ff, vb.pp("wi"))?;
|
||||
let wo = Linear::new(cfg.d_ff, cfg.d_model, vb.pp("wo"))?;
|
||||
Ok(Self {
|
||||
wi,
|
||||
wo,
|
||||
act: Activation::Relu,
|
||||
span: tracing::span!(tracing::Level::TRACE, "dense-act-dense"),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for T5DenseActDense {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let xs = self.wi.forward(xs)?;
|
||||
let xs = self.act.forward(&xs)?;
|
||||
let xs = self.wo.forward(&xs)?;
|
||||
@ -176,22 +207,27 @@ struct T5DenseGatedActDense {
|
||||
wi_1: Linear,
|
||||
wo: Linear,
|
||||
act: Activation,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl T5DenseGatedActDense {
|
||||
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let wi_0 = linear_no_bias(cfg.d_model, cfg.d_ff, vb.pp("wi_0"))?;
|
||||
let wi_1 = linear_no_bias(cfg.d_model, cfg.d_ff, vb.pp("wi_1"))?;
|
||||
let wo = linear_no_bias(cfg.d_ff, cfg.d_model, vb.pp("wo"))?;
|
||||
let wi_0 = Linear::new(cfg.d_model, cfg.d_ff, vb.pp("wi_0"))?;
|
||||
let wi_1 = Linear::new(cfg.d_model, cfg.d_ff, vb.pp("wi_1"))?;
|
||||
let wo = Linear::new(cfg.d_ff, cfg.d_model, vb.pp("wo"))?;
|
||||
Ok(Self {
|
||||
wi_0,
|
||||
wi_1,
|
||||
wo,
|
||||
act: Activation::NewGelu,
|
||||
span: tracing::span!(tracing::Level::TRACE, "dense-gated-act-dense"),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for T5DenseGatedActDense {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let hidden_gelu = self.act.forward(&self.wi_0.forward(xs)?)?;
|
||||
let hidden_linear = self.wi_1.forward(xs)?;
|
||||
let xs = hidden_gelu.broadcast_mul(&hidden_linear)?;
|
||||
@ -205,6 +241,7 @@ struct T5LayerFF {
|
||||
dense_act: Option<T5DenseActDense>,
|
||||
gated_dense_act: Option<T5DenseGatedActDense>,
|
||||
layer_norm: T5LayerNorm,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl T5LayerFF {
|
||||
@ -226,10 +263,14 @@ impl T5LayerFF {
|
||||
dense_act,
|
||||
gated_dense_act,
|
||||
layer_norm,
|
||||
span: tracing::span!(tracing::Level::TRACE, "layer-ff"),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for T5LayerFF {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let ys = self.layer_norm.forward(xs)?;
|
||||
let ys = match &self.dense_act {
|
||||
Some(dense_act) => dense_act.forward(&ys)?,
|
||||
@ -254,6 +295,7 @@ struct T5Attention {
|
||||
inner_dim: usize,
|
||||
use_cache: bool,
|
||||
kv_cache: Option<(Tensor, Tensor)>,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl T5Attention {
|
||||
@ -264,10 +306,10 @@ impl T5Attention {
|
||||
cfg: &Config,
|
||||
) -> Result<Self> {
|
||||
let inner_dim = cfg.num_heads * cfg.d_kv;
|
||||
let q = linear_no_bias(cfg.d_model, inner_dim, vb.pp("q"))?;
|
||||
let k = linear_no_bias(cfg.d_model, inner_dim, vb.pp("k"))?;
|
||||
let v = linear_no_bias(cfg.d_model, inner_dim, vb.pp("v"))?;
|
||||
let o = linear_no_bias(inner_dim, cfg.d_model, vb.pp("o"))?;
|
||||
let q = Linear::new(cfg.d_model, inner_dim, vb.pp("q"))?;
|
||||
let k = Linear::new(cfg.d_model, inner_dim, vb.pp("k"))?;
|
||||
let v = Linear::new(cfg.d_model, inner_dim, vb.pp("v"))?;
|
||||
let o = Linear::new(inner_dim, cfg.d_model, vb.pp("o"))?;
|
||||
let relative_attention_bias = if has_relative_attention_bias {
|
||||
let emb = embedding(
|
||||
cfg.relative_attention_num_buckets,
|
||||
@ -291,6 +333,7 @@ impl T5Attention {
|
||||
inner_dim,
|
||||
use_cache: cfg.use_cache && decoder,
|
||||
kv_cache: None,
|
||||
span: tracing::span!(tracing::Level::TRACE, "attention"),
|
||||
})
|
||||
}
|
||||
|
||||
@ -303,6 +346,7 @@ impl T5Attention {
|
||||
) -> Result<(Tensor, Option<Tensor>)> {
|
||||
// Performs Self-attention (if key_value_states is None) or attention
|
||||
// over source sentence (provided by key_value_states).
|
||||
let _enter = self.span.enter();
|
||||
let kv_input = match key_value_states {
|
||||
None => xs,
|
||||
Some(key_value_states) => key_value_states,
|
||||
@ -419,6 +463,7 @@ impl T5Attention {
|
||||
struct T5LayerSelfAttention {
|
||||
self_attention: T5Attention,
|
||||
layer_norm: T5LayerNorm,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl T5LayerSelfAttention {
|
||||
@ -429,6 +474,7 @@ impl T5LayerSelfAttention {
|
||||
Ok(Self {
|
||||
self_attention,
|
||||
layer_norm,
|
||||
span: tracing::span!(tracing::Level::TRACE, "self-attn"),
|
||||
})
|
||||
}
|
||||
|
||||
@ -438,6 +484,7 @@ impl T5LayerSelfAttention {
|
||||
position_bias: Option<&Tensor>,
|
||||
mask: Option<&Tensor>,
|
||||
) -> Result<(Tensor, Option<Tensor>)> {
|
||||
let _enter = self.span.enter();
|
||||
let normed_xs = self.layer_norm.forward(xs)?;
|
||||
let (ys, position_bias) =
|
||||
self.self_attention
|
||||
@ -451,6 +498,7 @@ impl T5LayerSelfAttention {
|
||||
struct T5LayerCrossAttention {
|
||||
cross_attention: T5Attention,
|
||||
layer_norm: T5LayerNorm,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl T5LayerCrossAttention {
|
||||
@ -461,6 +509,7 @@ impl T5LayerCrossAttention {
|
||||
Ok(Self {
|
||||
cross_attention,
|
||||
layer_norm,
|
||||
span: tracing::span!(tracing::Level::TRACE, "cross-attn"),
|
||||
})
|
||||
}
|
||||
|
||||
@ -470,6 +519,7 @@ impl T5LayerCrossAttention {
|
||||
position_bias: Option<&Tensor>,
|
||||
key_value_states: &Tensor,
|
||||
) -> Result<(Tensor, Option<Tensor>)> {
|
||||
let _enter = self.span.enter();
|
||||
let normed_hidden_states = self.layer_norm.forward(hidden_states)?;
|
||||
let (ys, position_bias) = self.cross_attention.forward(
|
||||
&normed_hidden_states,
|
||||
@ -487,6 +537,7 @@ struct T5Block {
|
||||
self_attn: T5LayerSelfAttention,
|
||||
cross_attn: Option<T5LayerCrossAttention>,
|
||||
ff: T5LayerFF,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl T5Block {
|
||||
@ -510,6 +561,7 @@ impl T5Block {
|
||||
self_attn,
|
||||
cross_attn,
|
||||
ff,
|
||||
span: tracing::span!(tracing::Level::TRACE, "block"),
|
||||
})
|
||||
}
|
||||
|
||||
@ -519,6 +571,7 @@ impl T5Block {
|
||||
position_bias: Option<&Tensor>,
|
||||
encoder_hidden_states: Option<&Tensor>,
|
||||
) -> Result<(Tensor, Option<Tensor>)> {
|
||||
let _enter = self.span.enter();
|
||||
// TODO: Cache masks
|
||||
let mask = match self.cross_attn.is_some() {
|
||||
true => {
|
||||
@ -550,6 +603,7 @@ struct T5Stack {
|
||||
block: Vec<T5Block>,
|
||||
shared: Arc<Embedding>,
|
||||
final_layer_norm: T5LayerNorm,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl T5Stack {
|
||||
@ -566,6 +620,7 @@ impl T5Stack {
|
||||
block,
|
||||
shared: shared.clone(),
|
||||
final_layer_norm,
|
||||
span: tracing::span!(tracing::Level::TRACE, "stack"),
|
||||
})
|
||||
}
|
||||
|
||||
@ -574,6 +629,7 @@ impl T5Stack {
|
||||
input_ids: &Tensor,
|
||||
encoder_hidden_states: Option<&Tensor>,
|
||||
) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let input_embeds = self.shared.as_ref().forward(input_ids)?;
|
||||
let mut hidden_states = input_embeds;
|
||||
let mut position_bias = None;
|
||||
@ -592,6 +648,7 @@ impl T5Stack {
|
||||
pub struct T5EncoderModel {
|
||||
encoder: T5Stack,
|
||||
device: Device,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl T5EncoderModel {
|
||||
@ -602,10 +659,12 @@ impl T5EncoderModel {
|
||||
Ok(Self {
|
||||
encoder,
|
||||
device: vb.device().clone(),
|
||||
span: tracing::span!(tracing::Level::TRACE, "encoder"),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn forward(&mut self, input_ids: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
self.encoder.forward(input_ids, None)
|
||||
}
|
||||
|
||||
@ -623,6 +682,7 @@ pub struct T5ForConditionalGeneration {
|
||||
lm_head: Option<Linear>,
|
||||
shared: Arc<Embedding>,
|
||||
device: Device,
|
||||
span_decode: tracing::Span,
|
||||
}
|
||||
|
||||
impl T5ForConditionalGeneration {
|
||||
@ -648,11 +708,7 @@ impl T5ForConditionalGeneration {
|
||||
let lm_head = if tie_word_embeddings {
|
||||
None
|
||||
} else {
|
||||
Some(linear_no_bias(
|
||||
cfg.d_model,
|
||||
cfg.vocab_size,
|
||||
vb.pp("lm_head"),
|
||||
)?)
|
||||
Some(Linear::new(cfg.d_model, cfg.vocab_size, vb.pp("lm_head"))?)
|
||||
};
|
||||
|
||||
Ok(Self {
|
||||
@ -663,6 +719,7 @@ impl T5ForConditionalGeneration {
|
||||
lm_head,
|
||||
shared,
|
||||
device: vb.device().clone(),
|
||||
span_decode: tracing::span!(tracing::Level::TRACE, "decode"),
|
||||
})
|
||||
}
|
||||
|
||||
@ -675,6 +732,7 @@ impl T5ForConditionalGeneration {
|
||||
decoder_input_ids: &Tensor,
|
||||
encoder_output: &Tensor,
|
||||
) -> Result<Tensor> {
|
||||
let _enter = self.span_decode.enter();
|
||||
let decoder_output = self
|
||||
.decoder
|
||||
.forward(decoder_input_ids, Some(encoder_output))?;
|
||||
|
Reference in New Issue
Block a user