Sketch the candle-nn crate. (#115)

* Sketch the candle-nn crate.

* Tweak the cuda dependencies.

* More cuda tweaks.
This commit is contained in:
Laurent Mazare
2023-07-10 08:50:09 +01:00
committed by GitHub
parent bc3be6f9b0
commit 9ce0f1c010
13 changed files with 230 additions and 315 deletions

View File

@ -1,5 +1,6 @@
use anyhow::Result;
use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor, D};
use candle_nn::{LayerNorm, Linear};
use std::collections::HashMap;
const MAX_SEQ_LEN: usize = 5000;
@ -61,80 +62,34 @@ impl<'a> VarBuilder<'a> {
}
}
#[derive(Debug)]
struct Linear {
weight: Tensor,
bias: Option<Tensor>,
fn linear(size1: usize, size2: usize, bias: bool, p: &str, vb: &VarBuilder) -> Result<Linear> {
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
let bias = if bias {
Some(vb.get(size2, &format!("{p}.bias"))?)
} else {
None
};
Ok(Linear::new(weight, bias))
}
impl Linear {
fn load(size1: usize, size2: usize, bias: bool, p: &str, vb: &VarBuilder) -> Result<Self> {
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
let bias = if bias {
Some(vb.get(size2, &format!("{p}.bias"))?)
} else {
None
};
Ok(Self { weight, bias })
}
fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
let (bsize, _, _) = x.shape().r3()?;
let w = self.weight.broadcast_left(bsize)?.t()?;
let x = x.matmul(&w)?;
match &self.bias {
None => Ok(x),
Some(bias) => x.broadcast_add(bias),
}
}
}
#[derive(Debug)]
struct LayerNorm {
weight: Tensor,
bias: Tensor,
eps: f64,
}
impl LayerNorm {
fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self {
Self { weight, bias, eps }
}
fn load(size: usize, eps: f64, p: &str, vb: &VarBuilder) -> Result<Self> {
let (weight, bias) = match (
vb.get(size, &format!("{p}.weight")),
vb.get(size, &format!("{p}.bias")),
) {
(Ok(weight), Ok(bias)) => (weight, bias),
(Err(err), _) | (_, Err(err)) => {
if let (Ok(weight), Ok(bias)) = (
vb.get(size, &format!("{p}.gamma")),
vb.get(size, &format!("{p}.beta")),
) {
(weight, bias)
} else {
return Err(err.into());
}
fn layer_norm(size: usize, eps: f64, p: &str, vb: &VarBuilder) -> Result<LayerNorm> {
let (weight, bias) = match (
vb.get(size, &format!("{p}.weight")),
vb.get(size, &format!("{p}.bias")),
) {
(Ok(weight), Ok(bias)) => (weight, bias),
(Err(err), _) | (_, Err(err)) => {
if let (Ok(weight), Ok(bias)) = (
vb.get(size, &format!("{p}.gamma")),
vb.get(size, &format!("{p}.beta")),
) {
(weight, bias)
} else {
return Err(err.into());
}
};
Ok(Self { weight, bias, eps })
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let dtype = x.dtype();
let (_bsize, _seq_len, hidden_size) = x.shape().r3()?;
let x = x.to_dtype(DType::F32)?;
let mean_x = (x.sum(&[2])? / hidden_size as f64)?;
let x = x.broadcast_sub(&mean_x)?;
let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?;
let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
let x = x_normed
.to_dtype(dtype)?
.broadcast_mul(&self.weight)?
.broadcast_add(&self.bias)?;
Ok(x)
}
}
};
Ok(LayerNorm::new(weight, bias, eps))
}
#[derive(Debug)]
@ -378,14 +333,14 @@ impl FalconAttention {
} else {
3 * hidden_size
};
let query_key_value = Linear::load(
let query_key_value = linear(
hidden_size,
qkv_out_dim,
cfg.bias,
&format!("{p}.query_key_value"),
vb,
)?;
let dense = Linear::load(
let dense = linear(
hidden_size,
hidden_size,
cfg.bias,
@ -497,8 +452,8 @@ impl FalconMlp {
fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
let h = cfg.hidden_size;
let b = cfg.bias;
let dense_h_to_4h = Linear::load(h, 4 * h, b, &format!("{p}.dense_h_to_4h"), vb)?;
let dense_4h_to_h = Linear::load(4 * h, h, b, &format!("{p}.dense_4h_to_h"), vb)?;
let dense_h_to_4h = linear(h, 4 * h, b, &format!("{p}.dense_h_to_4h"), vb)?;
let dense_4h_to_h = linear(4 * h, h, b, &format!("{p}.dense_4h_to_h"), vb)?;
let dropout = Dropout::new(cfg.hidden_dropout);
Ok(Self {
dense_h_to_4h,
@ -526,7 +481,7 @@ struct FalconDecoderLayer {
impl FalconDecoderLayer {
fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
let mlp = FalconMlp::load(&format!("{p}.mlp"), vb, cfg)?;
let inp_layernorm = LayerNorm::load(
let inp_layernorm = layer_norm(
cfg.hidden_size,
cfg.layer_norm_epsilon,
&format!("{p}.input_layernorm"),
@ -536,7 +491,7 @@ impl FalconDecoderLayer {
let post_attention_layernorm = if cfg.parallel_attn {
None
} else {
let ln = LayerNorm::load(
let ln = layer_norm(
cfg.hidden_size,
cfg.layer_norm_epsilon,
&format!("{p}.post_attention_layernorm"),
@ -617,13 +572,13 @@ impl Falcon {
let blocks = (0..cfg.num_hidden_layers)
.map(|i| FalconDecoderLayer::load(&format!("transformer.h.{i}"), vb, &cfg))
.collect::<Result<Vec<_>>>()?;
let ln_f = LayerNorm::load(
let ln_f = layer_norm(
cfg.hidden_size,
cfg.layer_norm_epsilon,
"transformer.ln_f",
vb,
)?;
let lm_head = Linear::load(cfg.hidden_size, cfg.vocab_size, false, "lm_head", vb)?;
let lm_head = linear(cfg.hidden_size, cfg.vocab_size, false, "lm_head", vb)?;
Ok(Self {
word_embeddings,
blocks,