Sketch the candle-nn crate. (#115)

* Sketch the candle-nn crate.

* Tweak the cuda dependencies.

* More cuda tweaks.
This commit is contained in:
Laurent Mazare
2023-07-10 08:50:09 +01:00
committed by GitHub
parent bc3be6f9b0
commit 9ce0f1c010
13 changed files with 230 additions and 315 deletions

View File

@ -4,6 +4,7 @@ members = [
"candle-examples",
"candle-kernels",
"candle-hub",
"candle-nn",
"candle-pyo3",
]

View File

@ -14,7 +14,8 @@ readme = "README.md"
blas = { version = "0.22.0", optional = true }
byteorder = "1.4.3"
candle-kernels = { path = "../candle-kernels", optional = true }
# cudarc = { version = "0.9.12", optional = true, features = ["f16"] }
# Re-enable this once 0.9.13 as been released as it would include the cublas-f16 changes
# cudarc = { version = "0.9.13", optional = true, features = ["f16"] }
cudarc = { git = "https://github.com/LaurentMazare/cudarc.git", branch = "cublas-bf16", optional = true, features = ["f16"] }
# TODO: Switch back to the official gemm implementation once something similar to
# https://github.com/sarah-ek/gemm/pull/8 is available.

View File

@ -12,6 +12,7 @@ readme = "README.md"
[dependencies]
candle = { path = "../candle-core", default-features=false }
candle-nn = { path = "../candle-nn", default-features=false }
serde = { version = "1.0.166", features = ["derive"] }
serde_json = "1.0.99"
num-traits = "0.2.15"
@ -27,5 +28,5 @@ wav = "1.0.0"
[features]
default = ["cuda"]
cuda = ["candle/cuda"]
cuda = ["candle/cuda", "candle-nn/cuda"]
mkl = ["dep:intel-mkl-src", "candle/mkl"]

View File

@ -6,6 +6,7 @@ extern crate intel_mkl_src;
use anyhow::{anyhow, Error as E, Result};
use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor};
use candle_hub::{api::sync::Api, Cache, Repo, RepoType};
use candle_nn::{LayerNorm, Linear};
use clap::Parser;
use serde::Deserialize;
use std::collections::HashMap;
@ -194,29 +195,10 @@ impl Embedding {
}
}
struct Linear {
weight: Tensor,
bias: Tensor,
}
impl Linear {
fn new(weight: Tensor, bias: Tensor) -> Self {
Self { weight, bias }
}
fn load(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
fn linear(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Linear> {
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
let bias = vb.get(size2, &format!("{p}.bias"))?;
Ok(Self::new(weight, bias))
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let (bsize, _, _) = x.shape().r3()?;
let w = self.weight.broadcast_left(bsize)?.t()?;
let x = x.matmul(&w)?;
let x = x.broadcast_add(&self.bias)?;
Ok(x)
}
Ok(Linear::new(weight, Some(bias)))
}
struct Dropout {
@ -234,19 +216,7 @@ impl Dropout {
}
}
// This layer norm version handles both weight and bias so removes the mean.
struct LayerNorm {
weight: Tensor,
bias: Tensor,
eps: f64,
}
impl LayerNorm {
fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self {
Self { weight, bias, eps }
}
fn load(size: usize, eps: f64, p: &str, vb: &VarBuilder) -> Result<Self> {
fn layer_norm(size: usize, eps: f64, p: &str, vb: &VarBuilder) -> Result<LayerNorm> {
let (weight, bias) = match (
vb.get(size, &format!("{p}.weight")),
vb.get(size, &format!("{p}.bias")),
@ -263,20 +233,7 @@ impl LayerNorm {
}
}
};
Ok(Self { weight, bias, eps })
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let (_bsize, _seq_len, hidden_size) = x.shape().r3()?;
let mean_x = (x.sum(&[2])? / hidden_size as f64)?;
let x = x.broadcast_sub(&mean_x)?;
let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?;
let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
let x = x_normed
.broadcast_mul(&self.weight)?
.broadcast_add(&self.bias)?;
Ok(x)
}
Ok(LayerNorm::new(weight, bias, eps))
}
// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L180
@ -310,7 +267,7 @@ impl BertEmbeddings {
&format!("{p}.token_type_embeddings"),
vb,
)?;
let layer_norm = LayerNorm::load(
let layer_norm = layer_norm(
config.hidden_size,
config.layer_norm_eps,
&format!("{p}.LayerNorm"),
@ -362,9 +319,9 @@ impl BertSelfAttention {
let all_head_size = config.num_attention_heads * attention_head_size;
let dropout = Dropout::new(config.hidden_dropout_prob);
let hidden_size = config.hidden_size;
let query = Linear::load(hidden_size, all_head_size, &format!("{p}.query"), vb)?;
let value = Linear::load(hidden_size, all_head_size, &format!("{p}.value"), vb)?;
let key = Linear::load(hidden_size, all_head_size, &format!("{p}.key"), vb)?;
let query = linear(hidden_size, all_head_size, &format!("{p}.query"), vb)?;
let value = linear(hidden_size, all_head_size, &format!("{p}.value"), vb)?;
let key = linear(hidden_size, all_head_size, &format!("{p}.key"), vb)?;
Ok(Self {
query,
key,
@ -414,13 +371,13 @@ struct BertSelfOutput {
impl BertSelfOutput {
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
let dense = Linear::load(
let dense = linear(
config.hidden_size,
config.hidden_size,
&format!("{p}.dense"),
vb,
)?;
let layer_norm = LayerNorm::load(
let layer_norm = layer_norm(
config.hidden_size,
config.layer_norm_eps,
&format!("{p}.LayerNorm"),
@ -437,7 +394,7 @@ impl BertSelfOutput {
fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
let hidden_states = self.dense.forward(hidden_states)?;
let hidden_states = self.dropout.forward(&hidden_states)?;
self.layer_norm.forward(&(hidden_states + input_tensor)?)
Ok(self.layer_norm.forward(&(hidden_states + input_tensor)?)?)
}
}
@ -472,7 +429,7 @@ struct BertIntermediate {
impl BertIntermediate {
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
let dense = Linear::load(
let dense = linear(
config.hidden_size,
config.intermediate_size,
&format!("{p}.dense"),
@ -500,13 +457,13 @@ struct BertOutput {
impl BertOutput {
fn load(p: &str, vb: &VarBuilder, config: &Config) -> Result<Self> {
let dense = Linear::load(
let dense = linear(
config.intermediate_size,
config.hidden_size,
&format!("{p}.dense"),
vb,
)?;
let layer_norm = LayerNorm::load(
let layer_norm = layer_norm(
config.hidden_size,
config.layer_norm_eps,
&format!("{p}.LayerNorm"),
@ -523,7 +480,7 @@ impl BertOutput {
fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
let hidden_states = self.dense.forward(hidden_states)?;
let hidden_states = self.dropout.forward(&hidden_states)?;
self.layer_norm.forward(&(hidden_states + input_tensor)?)
Ok(self.layer_norm.forward(&(hidden_states + input_tensor)?)?)
}
}

View File

@ -1,5 +1,6 @@
use anyhow::Result;
use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor, D};
use candle_nn::{LayerNorm, Linear};
use std::collections::HashMap;
const MAX_SEQ_LEN: usize = 5000;
@ -61,47 +62,17 @@ impl<'a> VarBuilder<'a> {
}
}
#[derive(Debug)]
struct Linear {
weight: Tensor,
bias: Option<Tensor>,
}
impl Linear {
fn load(size1: usize, size2: usize, bias: bool, p: &str, vb: &VarBuilder) -> Result<Self> {
fn linear(size1: usize, size2: usize, bias: bool, p: &str, vb: &VarBuilder) -> Result<Linear> {
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
let bias = if bias {
Some(vb.get(size2, &format!("{p}.bias"))?)
} else {
None
};
Ok(Self { weight, bias })
Ok(Linear::new(weight, bias))
}
fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
let (bsize, _, _) = x.shape().r3()?;
let w = self.weight.broadcast_left(bsize)?.t()?;
let x = x.matmul(&w)?;
match &self.bias {
None => Ok(x),
Some(bias) => x.broadcast_add(bias),
}
}
}
#[derive(Debug)]
struct LayerNorm {
weight: Tensor,
bias: Tensor,
eps: f64,
}
impl LayerNorm {
fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self {
Self { weight, bias, eps }
}
fn load(size: usize, eps: f64, p: &str, vb: &VarBuilder) -> Result<Self> {
fn layer_norm(size: usize, eps: f64, p: &str, vb: &VarBuilder) -> Result<LayerNorm> {
let (weight, bias) = match (
vb.get(size, &format!("{p}.weight")),
vb.get(size, &format!("{p}.bias")),
@ -118,23 +89,7 @@ impl LayerNorm {
}
}
};
Ok(Self { weight, bias, eps })
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let dtype = x.dtype();
let (_bsize, _seq_len, hidden_size) = x.shape().r3()?;
let x = x.to_dtype(DType::F32)?;
let mean_x = (x.sum(&[2])? / hidden_size as f64)?;
let x = x.broadcast_sub(&mean_x)?;
let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?;
let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
let x = x_normed
.to_dtype(dtype)?
.broadcast_mul(&self.weight)?
.broadcast_add(&self.bias)?;
Ok(x)
}
Ok(LayerNorm::new(weight, bias, eps))
}
#[derive(Debug)]
@ -378,14 +333,14 @@ impl FalconAttention {
} else {
3 * hidden_size
};
let query_key_value = Linear::load(
let query_key_value = linear(
hidden_size,
qkv_out_dim,
cfg.bias,
&format!("{p}.query_key_value"),
vb,
)?;
let dense = Linear::load(
let dense = linear(
hidden_size,
hidden_size,
cfg.bias,
@ -497,8 +452,8 @@ impl FalconMlp {
fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
let h = cfg.hidden_size;
let b = cfg.bias;
let dense_h_to_4h = Linear::load(h, 4 * h, b, &format!("{p}.dense_h_to_4h"), vb)?;
let dense_4h_to_h = Linear::load(4 * h, h, b, &format!("{p}.dense_4h_to_h"), vb)?;
let dense_h_to_4h = linear(h, 4 * h, b, &format!("{p}.dense_h_to_4h"), vb)?;
let dense_4h_to_h = linear(4 * h, h, b, &format!("{p}.dense_4h_to_h"), vb)?;
let dropout = Dropout::new(cfg.hidden_dropout);
Ok(Self {
dense_h_to_4h,
@ -526,7 +481,7 @@ struct FalconDecoderLayer {
impl FalconDecoderLayer {
fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
let mlp = FalconMlp::load(&format!("{p}.mlp"), vb, cfg)?;
let inp_layernorm = LayerNorm::load(
let inp_layernorm = layer_norm(
cfg.hidden_size,
cfg.layer_norm_epsilon,
&format!("{p}.input_layernorm"),
@ -536,7 +491,7 @@ impl FalconDecoderLayer {
let post_attention_layernorm = if cfg.parallel_attn {
None
} else {
let ln = LayerNorm::load(
let ln = layer_norm(
cfg.hidden_size,
cfg.layer_norm_epsilon,
&format!("{p}.post_attention_layernorm"),
@ -617,13 +572,13 @@ impl Falcon {
let blocks = (0..cfg.num_hidden_layers)
.map(|i| FalconDecoderLayer::load(&format!("transformer.h.{i}"), vb, &cfg))
.collect::<Result<Vec<_>>>()?;
let ln_f = LayerNorm::load(
let ln_f = layer_norm(
cfg.hidden_size,
cfg.layer_norm_epsilon,
"transformer.ln_f",
vb,
)?;
let lm_head = Linear::load(cfg.hidden_size, cfg.vocab_size, false, "lm_head", vb)?;
let lm_head = linear(cfg.hidden_size, cfg.vocab_size, false, "lm_head", vb)?;
Ok(Self {
word_embeddings,
blocks,

View File

@ -1,4 +1,4 @@
use crate::nn::{Embedding, HiddenAct, LayerNorm, Linear, VarBuilder};
use crate::nn::{layer_norm, linear, Embedding, HiddenAct, LayerNorm, Linear, VarBuilder};
use crate::{encodec_model, t5_model};
use anyhow::Result;
use candle::{DType, Device, Tensor, D};
@ -146,10 +146,10 @@ impl MusicgenAttention {
let h = cfg.hidden_size;
let num_heads = cfg.num_attention_heads;
let head_dim = h / num_heads;
let k_proj = Linear::load(h, h, false, &format!("{p}.k_proj"), vb)?;
let v_proj = Linear::load(h, h, false, &format!("{p}.v_proj"), vb)?;
let q_proj = Linear::load(h, h, false, &format!("{p}.q_proj"), vb)?;
let out_proj = Linear::load(h, h, false, &format!("{p}.out_proj"), vb)?;
let k_proj = linear(h, h, false, &format!("{p}.k_proj"), vb)?;
let v_proj = linear(h, h, false, &format!("{p}.v_proj"), vb)?;
let q_proj = linear(h, h, false, &format!("{p}.q_proj"), vb)?;
let out_proj = linear(h, h, false, &format!("{p}.out_proj"), vb)?;
Ok(Self {
scaling: 1. / (head_dim as f64).sqrt(),
is_decoder: true,
@ -213,14 +213,13 @@ impl MusicgenDecoderLayer {
fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
let h = cfg.hidden_size;
let self_attn = MusicgenAttention::load(&format!("{p}.self_attn"), vb, cfg)?;
let self_attn_layer_norm =
LayerNorm::load(h, 1e-5, &format!("{p}.self_attn_layer_norm"), vb)?;
let self_attn_layer_norm = layer_norm(h, 1e-5, &format!("{p}.self_attn_layer_norm"), vb)?;
let encoder_attn = MusicgenAttention::load(&format!("{p}.encoder_attn"), vb, cfg)?;
let encoder_attn_layer_norm =
LayerNorm::load(h, 1e-5, &format!("{p}.encoder_attn_layer_norm"), vb)?;
let fc1 = Linear::load(h, cfg.ffn_dim, false, &format!("{p}.fc1"), vb)?;
let fc2 = Linear::load(cfg.ffn_dim, h, false, &format!("{p}.fc2"), vb)?;
let final_layer_norm = LayerNorm::load(h, 1e-5, &format!("{p}.final_layer_norm"), vb)?;
layer_norm(h, 1e-5, &format!("{p}.encoder_attn_layer_norm"), vb)?;
let fc1 = linear(h, cfg.ffn_dim, false, &format!("{p}.fc1"), vb)?;
let fc2 = linear(cfg.ffn_dim, h, false, &format!("{p}.fc2"), vb)?;
let final_layer_norm = layer_norm(h, 1e-5, &format!("{p}.final_layer_norm"), vb)?;
Ok(Self {
self_attn,
self_attn_layer_norm,
@ -290,7 +289,7 @@ impl MusicgenDecoder {
let layers = (0..cfg.num_hidden_layers)
.map(|i| MusicgenDecoderLayer::load(&format!("{p}.layers.{i}"), vb, cfg))
.collect::<Result<Vec<_>>>()?;
let layer_norm = LayerNorm::load(h, 1e-5, &format!("{p}.layer_norm"), vb)?;
let layer_norm = layer_norm(h, 1e-5, &format!("{p}.layer_norm"), vb)?;
Ok(Self {
embed_tokens,
embed_positions,
@ -341,7 +340,7 @@ impl MusicgenForCausalLM {
let h = cfg.hidden_size;
let decoder = MusicgenDecoder::load(&format!("{p}.model.decoder"), vb, cfg)?;
let lm_heads = (0..cfg.num_codebooks)
.map(|i| Linear::load(h, cfg.vocab_size, false, &format!("{p}.lm_heads.{i}"), vb))
.map(|i| linear(h, cfg.vocab_size, false, &format!("{p}.lm_heads.{i}"), vb))
.collect::<Result<Vec<_>>>()?;
Ok(Self {
decoder,

View File

@ -63,47 +63,21 @@ impl<'a> VarBuilder<'a> {
}
}
#[derive(Debug)]
pub struct Linear {
weight: Tensor,
bias: Option<Tensor>,
}
pub type Linear = candle_nn::Linear;
impl Linear {
pub fn load(size1: usize, size2: usize, bias: bool, p: &str, vb: &VarBuilder) -> Result<Self> {
pub fn linear(size1: usize, size2: usize, bias: bool, p: &str, vb: &VarBuilder) -> Result<Linear> {
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
let bias = if bias {
Some(vb.get(size2, &format!("{p}.bias"))?)
} else {
None
};
Ok(Self { weight, bias })
Ok(Linear::new(weight, bias))
}
pub fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
let (bsize, _, _) = x.shape().r3()?;
let w = self.weight.broadcast_left(bsize)?.t()?;
let x = x.matmul(&w)?;
match &self.bias {
None => Ok(x),
Some(bias) => x.broadcast_add(bias),
}
}
}
pub type LayerNorm = candle_nn::LayerNorm;
#[derive(Debug)]
pub struct LayerNorm {
weight: Tensor,
bias: Tensor,
eps: f64,
}
impl LayerNorm {
pub fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self {
Self { weight, bias, eps }
}
pub fn load(size: usize, eps: f64, p: &str, vb: &VarBuilder) -> Result<Self> {
pub fn layer_norm(size: usize, eps: f64, p: &str, vb: &VarBuilder) -> Result<LayerNorm> {
let (weight, bias) = match (
vb.get(size, &format!("{p}.weight")),
vb.get(size, &format!("{p}.bias")),
@ -120,23 +94,7 @@ impl LayerNorm {
}
}
};
Ok(Self { weight, bias, eps })
}
pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
let dtype = x.dtype();
let (_bsize, _seq_len, hidden_size) = x.shape().r3()?;
let x = x.to_dtype(DType::F32)?;
let mean_x = (x.sum(&[2])? / hidden_size as f64)?;
let x = x.broadcast_sub(&mean_x)?;
let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?;
let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
let x = x_normed
.to_dtype(dtype)?
.broadcast_mul(&self.weight)?
.broadcast_add(&self.bias)?;
Ok(x)
}
Ok(LayerNorm::new(weight, bias, eps))
}
#[derive(Debug)]

View File

@ -1,7 +1,7 @@
// T5 Text Encoder
// https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py
use crate::nn::{Dropout, Embedding, HiddenAct, Linear, VarBuilder};
use crate::nn::{linear, Dropout, Embedding, HiddenAct, Linear, VarBuilder};
use anyhow::Result;
use candle::Tensor;
@ -104,8 +104,8 @@ struct T5DenseActDense {
impl T5DenseActDense {
fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
let wi = Linear::load(cfg.d_model, cfg.d_ff, false, &format!("{p}.wi"), vb)?;
let wo = Linear::load(cfg.d_ff, cfg.d_model, false, &format!("{p}.wo"), vb)?;
let wi = linear(cfg.d_model, cfg.d_ff, false, &format!("{p}.wi"), vb)?;
let wo = linear(cfg.d_ff, cfg.d_model, false, &format!("{p}.wo"), vb)?;
let dropout = Dropout::new(cfg.dropout_rate);
Ok(Self {
wi,
@ -154,10 +154,10 @@ struct T5Attention {
impl T5Attention {
fn load(h: bool, p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
let inner_dim = cfg.num_heads * cfg.d_kv;
let q = Linear::load(cfg.d_model, inner_dim, false, &format!("{p}.q"), vb)?;
let k = Linear::load(cfg.d_model, inner_dim, false, &format!("{p}.k"), vb)?;
let v = Linear::load(cfg.d_model, inner_dim, false, &format!("{p}.v"), vb)?;
let o = Linear::load(inner_dim, cfg.d_model, false, &format!("{p}.o"), vb)?;
let q = linear(cfg.d_model, inner_dim, false, &format!("{p}.q"), vb)?;
let k = linear(cfg.d_model, inner_dim, false, &format!("{p}.k"), vb)?;
let v = linear(cfg.d_model, inner_dim, false, &format!("{p}.v"), vb)?;
let o = linear(inner_dim, cfg.d_model, false, &format!("{p}.o"), vb)?;
let relative_attention_bias = if h {
let emb = Embedding::load(
cfg.relative_attention_num_buckets,

View File

@ -2,6 +2,7 @@
// back when using RUST_LIB_BACKTRACE=1.
use anyhow::Result;
use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor};
use candle_nn::{LayerNorm, Linear};
use serde::Deserialize;
use std::collections::HashMap;
@ -138,35 +139,15 @@ impl Embedding {
}
}
struct Linear {
weight: Tensor,
bias: Option<Tensor>,
}
impl Linear {
fn load(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
fn linear(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Linear> {
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
let bias = vb.get(size2, &format!("{p}.bias"))?;
Ok(Self {
weight,
bias: Some(bias),
})
Ok(Linear::new(weight, Some(bias)))
}
fn load_no_bias(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
fn linear_no_bias(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Linear> {
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
Ok(Self { weight, bias: None })
}
fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
let (bsize, _, _) = x.shape().r3()?;
let w = self.weight.broadcast_left(bsize)?.t()?;
let x = x.matmul(&w)?;
match &self.bias {
None => Ok(x),
Some(bias) => x.broadcast_add(bias),
}
}
Ok(Linear::new(weight, None))
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
@ -258,35 +239,10 @@ impl Dropout {
}
}
// This layer norm version handles both weight and bias so removes the mean.
struct LayerNorm {
weight: Tensor,
bias: Tensor,
eps: f64,
}
impl LayerNorm {
fn load(size: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
fn layer_norm(size: usize, p: &str, vb: &VarBuilder) -> Result<LayerNorm> {
let weight = vb.get(size, &format!("{p}.weight"))?;
let bias = vb.get(size, &format!("{p}.bias"))?;
Ok(Self {
weight,
bias,
eps: 1e-5,
})
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let (_bsize, _seq_len, hidden_size) = x.shape().r3()?;
let mean_x = (x.sum(&[2])? / hidden_size as f64)?;
let x = x.broadcast_sub(&mean_x)?;
let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?;
let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
let x = x_normed
.broadcast_mul(&self.weight)?
.broadcast_add(&self.bias)?;
Ok(x)
}
Ok(LayerNorm::new(weight, bias, 1e-5))
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62
@ -300,10 +256,10 @@ struct MultiHeadAttention {
impl MultiHeadAttention {
fn load(n_state: usize, n_head: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
let query = Linear::load(n_state, n_state, &format!("{p}.q_proj"), vb)?;
let value = Linear::load(n_state, n_state, &format!("{p}.v_proj"), vb)?;
let key = Linear::load_no_bias(n_state, n_state, &format!("{p}.k_proj"), vb)?;
let out = Linear::load(n_state, n_state, &format!("{p}.out_proj"), vb)?;
let query = linear(n_state, n_state, &format!("{p}.q_proj"), vb)?;
let value = linear(n_state, n_state, &format!("{p}.v_proj"), vb)?;
let key = linear_no_bias(n_state, n_state, &format!("{p}.k_proj"), vb)?;
let out = linear(n_state, n_state, &format!("{p}.out_proj"), vb)?;
Ok(Self {
query,
key,
@ -364,20 +320,19 @@ struct ResidualAttentionBlock {
impl ResidualAttentionBlock {
fn load(n_state: usize, n_head: usize, ca: bool, p: &str, vb: &VarBuilder) -> Result<Self> {
let attn = MultiHeadAttention::load(n_state, n_head, &format!("{p}.self_attn"), vb)?;
let attn_ln = LayerNorm::load(n_state, &format!("{p}.self_attn_layer_norm"), vb)?;
let attn_ln = layer_norm(n_state, &format!("{p}.self_attn_layer_norm"), vb)?;
let cross_attn = if ca {
let cross_attn =
MultiHeadAttention::load(n_state, n_head, &format!("{p}.encoder_attn"), vb)?;
let cross_attn_ln =
LayerNorm::load(n_state, &format!("{p}.encoder_attn_layer_norm"), vb)?;
let cross_attn_ln = layer_norm(n_state, &format!("{p}.encoder_attn_layer_norm"), vb)?;
Some((cross_attn, cross_attn_ln))
} else {
None
};
let n_mlp = n_state * 4;
let mlp_linear1 = Linear::load(n_state, n_mlp, &format!("{p}.fc1"), vb)?;
let mlp_linear2 = Linear::load(n_mlp, n_state, &format!("{p}.fc2"), vb)?;
let mlp_ln = LayerNorm::load(n_state, &format!("{p}.final_layer_norm"), vb)?;
let mlp_linear1 = linear(n_state, n_mlp, &format!("{p}.fc1"), vb)?;
let mlp_linear2 = linear(n_mlp, n_state, &format!("{p}.fc2"), vb)?;
let mlp_ln = layer_norm(n_state, &format!("{p}.final_layer_norm"), vb)?;
Ok(Self {
attn,
attn_ln,
@ -456,7 +411,7 @@ impl AudioEncoder {
ResidualAttentionBlock::load(n_state, n_head, false, &format!("{p}.layers.{i}"), vb)
})
.collect::<Result<Vec<_>>>()?;
let ln_post = LayerNorm::load(n_state, &format!("{p}.layer_norm"), vb)?;
let ln_post = layer_norm(n_state, &format!("{p}.layer_norm"), vb)?;
Ok(Self {
conv1,
conv2,
@ -503,7 +458,7 @@ impl TextDecoder {
ResidualAttentionBlock::load(n_state, n_head, true, &format!("{p}.layers.{i}"), vb)
})
.collect::<Result<Vec<_>>>()?;
let ln = LayerNorm::load(n_state, &format!("{p}.layer_norm"), vb)?;
let ln = layer_norm(n_state, &format!("{p}.layer_norm"), vb)?;
let mask: Vec<_> = (0..n_ctx)
.flat_map(|i| (0..n_ctx).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
.collect();

24
candle-nn/Cargo.toml Normal file
View File

@ -0,0 +1,24 @@
[package]
name = "candle-nn"
version = "0.1.0"
edition = "2021"
description = "Minimalist ML framework."
repository = "https://github.com/LaurentMazare/candle"
keywords = ["blas", "tensor", "machine-learning"]
categories = ["science"]
license = "MIT/Apache-2.0"
readme = "README.md"
[dependencies]
candle = { path = "../candle-core", default-features=false }
thiserror = "1"
intel-mkl-src = {version="0.8.1", optional=true, features = ["mkl-dynamic-lp64-iomp"]}
[dev-dependencies]
anyhow = { version = "1", features = ["backtrace"] }
[features]
default = ["cuda"]
cuda = ["candle/cuda"]
mkl = ["dep:intel-mkl-src", "candle/mkl"]

View File

@ -0,0 +1,34 @@
use candle::{DType, Result, Tensor};
// This layer norm version handles both weight and bias so removes the mean.
#[derive(Debug)]
pub struct LayerNorm {
weight: Tensor,
bias: Tensor,
eps: f64,
}
impl LayerNorm {
pub fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self {
Self { weight, bias, eps }
}
pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
let x_dtype = x.dtype();
let internal_dtype = match x_dtype {
DType::F16 | DType::BF16 => DType::F32,
d => d,
};
let (_bsize, _seq_len, hidden_size) = x.shape().r3()?;
let x = x.to_dtype(internal_dtype)?;
let mean_x = (x.sum(&[2])? / hidden_size as f64)?;
let x = x.broadcast_sub(&mean_x)?;
let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?;
let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
let x = x_normed
.to_dtype(x_dtype)?
.broadcast_mul(&self.weight)?
.broadcast_add(&self.bias)?;
Ok(x)
}
}

5
candle-nn/src/lib.rs Normal file
View File

@ -0,0 +1,5 @@
mod layer_norm;
mod linear;
pub use layer_norm::LayerNorm;
pub use linear::Linear;

25
candle-nn/src/linear.rs Normal file
View File

@ -0,0 +1,25 @@
use candle::Tensor;
#[derive(Debug)]
pub struct Linear {
weight: Tensor,
bias: Option<Tensor>,
}
impl Linear {
pub fn new(weight: Tensor, bias: Option<Tensor>) -> Self {
Self { weight, bias }
}
pub fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
let w = match x.dims() {
&[bsize, _, _] => self.weight.broadcast_left(bsize)?.t()?,
_ => self.weight.t()?,
};
let x = x.matmul(&w)?;
match &self.bias {
None => Ok(x),
Some(bias) => x.broadcast_add(bias),
}
}
}