mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 18:28:24 +00:00
Fix for clippy 1.86. (#2864)
* Fix for clippy 1.86. * More clippy fixes. * More fixes.
This commit is contained in:
@ -816,7 +816,7 @@ impl PthTensors {
|
|||||||
/// # Arguments
|
/// # Arguments
|
||||||
/// * `path` - Path to the pth file.
|
/// * `path` - Path to the pth file.
|
||||||
/// * `key` - Optional key to retrieve `state_dict` from the pth file. Sometimes the pth file
|
/// * `key` - Optional key to retrieve `state_dict` from the pth file. Sometimes the pth file
|
||||||
/// contains multiple objects and the state_dict is the one we are interested in.
|
/// contains multiple objects and the state_dict is the one we are interested in.
|
||||||
pub fn read_all_with_key<P: AsRef<std::path::Path>>(
|
pub fn read_all_with_key<P: AsRef<std::path::Path>>(
|
||||||
path: P,
|
path: P,
|
||||||
key: Option<&str>,
|
key: Option<&str>,
|
||||||
|
@ -21,7 +21,7 @@ impl Config {
|
|||||||
}
|
}
|
||||||
|
|
||||||
fn dt_rank(&self) -> usize {
|
fn dt_rank(&self) -> usize {
|
||||||
(self.d_model + 15) / 16
|
self.d_model.div_ceil(16)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn d_conv(&self) -> usize {
|
fn d_conv(&self) -> usize {
|
||||||
|
@ -7,7 +7,7 @@ use candle::{Result, Tensor};
|
|||||||
/// Arguments
|
/// Arguments
|
||||||
///
|
///
|
||||||
/// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number
|
/// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number
|
||||||
/// of categories. This is expected to contain log probabilities.
|
/// of categories. This is expected to contain log probabilities.
|
||||||
/// * [target]: The ground truth labels as a tensor of u32 of dimension `N`.
|
/// * [target]: The ground truth labels as a tensor of u32 of dimension `N`.
|
||||||
///
|
///
|
||||||
/// The resulting tensor is a scalar containing the average value over the batch.
|
/// The resulting tensor is a scalar containing the average value over the batch.
|
||||||
@ -34,7 +34,7 @@ pub fn nll(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
|
|||||||
/// Arguments
|
/// Arguments
|
||||||
///
|
///
|
||||||
/// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number
|
/// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number
|
||||||
/// of categories. This is expected to raw logits.
|
/// of categories. This is expected to raw logits.
|
||||||
/// * [target]: The ground truth labels as a tensor of u32 of dimension `N`.
|
/// * [target]: The ground truth labels as a tensor of u32 of dimension `N`.
|
||||||
///
|
///
|
||||||
/// The resulting tensor is a scalar containing the average value over the batch.
|
/// The resulting tensor is a scalar containing the average value over the batch.
|
||||||
@ -56,9 +56,9 @@ pub fn mse(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
|
|||||||
/// Arguments
|
/// Arguments
|
||||||
///
|
///
|
||||||
/// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number
|
/// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number
|
||||||
/// of categories. This is expected to raw logits.
|
/// of categories. This is expected to raw logits.
|
||||||
/// * [target]: The ground truth labels as a tensor of u32 of dimension `N, C` where `N` is the batch size and `C` the number
|
/// * [target]: The ground truth labels as a tensor of u32 of dimension `N, C` where `N` is the batch size and `C` the number
|
||||||
/// of categories.
|
/// of categories.
|
||||||
///
|
///
|
||||||
/// The resulting tensor is a scalar containing the average value over the batch.
|
/// The resulting tensor is a scalar containing the average value over the batch.
|
||||||
pub fn binary_cross_entropy_with_logit(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
|
pub fn binary_cross_entropy_with_logit(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
|
||||||
|
@ -104,7 +104,7 @@ impl EncoderBlock {
|
|||||||
let snake1 = Snake1d::new(dim / 2, vb.pp(3))?;
|
let snake1 = Snake1d::new(dim / 2, vb.pp(3))?;
|
||||||
let cfg1 = Conv1dConfig {
|
let cfg1 = Conv1dConfig {
|
||||||
stride,
|
stride,
|
||||||
padding: (stride + 1) / 2,
|
padding: stride.div_ceil(2),
|
||||||
..Default::default()
|
..Default::default()
|
||||||
};
|
};
|
||||||
let conv1 = encodec::conv1d_weight_norm(dim / 2, dim, 2 * stride, cfg1, vb.pp(4))?;
|
let conv1 = encodec::conv1d_weight_norm(dim / 2, dim, 2 * stride, cfg1, vb.pp(4))?;
|
||||||
@ -196,7 +196,7 @@ impl DecoderBlock {
|
|||||||
let snake1 = Snake1d::new(in_dim, vb.pp(0))?;
|
let snake1 = Snake1d::new(in_dim, vb.pp(0))?;
|
||||||
let cfg = ConvTranspose1dConfig {
|
let cfg = ConvTranspose1dConfig {
|
||||||
stride,
|
stride,
|
||||||
padding: (stride + 1) / 2,
|
padding: stride.div_ceil(2),
|
||||||
..Default::default()
|
..Default::default()
|
||||||
};
|
};
|
||||||
let conv_tr1 = encodec::conv_transpose1d_weight_norm(
|
let conv_tr1 = encodec::conv_transpose1d_weight_norm(
|
||||||
|
@ -6,8 +6,8 @@ pub fn get_noise(
|
|||||||
width: usize,
|
width: usize,
|
||||||
device: &Device,
|
device: &Device,
|
||||||
) -> Result<Tensor> {
|
) -> Result<Tensor> {
|
||||||
let height = (height + 15) / 16 * 2;
|
let height = height.div_ceil(16) * 2;
|
||||||
let width = (width + 15) / 16 * 2;
|
let width = width.div_ceil(16) * 2;
|
||||||
Tensor::randn(0f32, 1., (num_samples, 16, height, width), device)
|
Tensor::randn(0f32, 1., (num_samples, 16, height, width), device)
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -84,8 +84,8 @@ pub fn get_schedule(num_steps: usize, shift: Option<(usize, f64, f64)>) -> Vec<f
|
|||||||
|
|
||||||
pub fn unpack(xs: &Tensor, height: usize, width: usize) -> Result<Tensor> {
|
pub fn unpack(xs: &Tensor, height: usize, width: usize) -> Result<Tensor> {
|
||||||
let (b, _h_w, c_ph_pw) = xs.dims3()?;
|
let (b, _h_w, c_ph_pw) = xs.dims3()?;
|
||||||
let height = (height + 15) / 16;
|
let height = height.div_ceil(16);
|
||||||
let width = (width + 15) / 16;
|
let width = width.div_ceil(16);
|
||||||
xs.reshape((b, height, width, c_ph_pw / 4, 2, 2))? // (b, h, w, c, ph, pw)
|
xs.reshape((b, height, width, c_ph_pw / 4, 2, 2))? // (b, h, w, c, ph, pw)
|
||||||
.permute((0, 3, 1, 4, 2, 5))? // (b, c, h, ph, w, pw)
|
.permute((0, 3, 1, 4, 2, 5))? // (b, c, h, ph, w, pw)
|
||||||
.reshape((b, c_ph_pw / 4, height * 2, width * 2))
|
.reshape((b, c_ph_pw / 4, height * 2, width * 2))
|
||||||
|
@ -27,7 +27,7 @@ impl Config {
|
|||||||
}
|
}
|
||||||
|
|
||||||
fn dt_rank(&self) -> usize {
|
fn dt_rank(&self) -> usize {
|
||||||
(self.d_model + 15) / 16
|
self.d_model.div_ceil(16)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn d_inner(&self) -> usize {
|
fn d_inner(&self) -> usize {
|
||||||
|
@ -716,7 +716,7 @@ pub mod transformer {
|
|||||||
None => {
|
None => {
|
||||||
let hidden_dim = self.dim * 4;
|
let hidden_dim = self.dim * 4;
|
||||||
let n_hidden = ((2 * hidden_dim) as f64 / 3.) as usize;
|
let n_hidden = ((2 * hidden_dim) as f64 / 3.) as usize;
|
||||||
(n_hidden + 255) / 256 * 256
|
n_hidden.div_ceil(256) * 256
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -198,7 +198,7 @@ pub fn log_mel_spectrogram_<T: Float>(
|
|||||||
let samples = {
|
let samples = {
|
||||||
let mut samples_padded = samples.to_vec();
|
let mut samples_padded = samples.to_vec();
|
||||||
let to_add = n_len * fft_step - samples.len();
|
let to_add = n_len * fft_step - samples.len();
|
||||||
samples_padded.extend(std::iter::repeat(zero).take(to_add));
|
samples_padded.extend(std::iter::repeat_n(zero, to_add));
|
||||||
samples_padded
|
samples_padded
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -177,7 +177,7 @@ fn log_mel_spectrogram_<T: Float + std::fmt::Display>(
|
|||||||
let samples = {
|
let samples = {
|
||||||
let mut samples_padded = samples.to_vec();
|
let mut samples_padded = samples.to_vec();
|
||||||
let to_add = n_len * fft_step - samples.len();
|
let to_add = n_len * fft_step - samples.len();
|
||||||
samples_padded.extend(std::iter::repeat(zero).take(to_add));
|
samples_padded.extend(std::iter::repeat_n(zero, to_add));
|
||||||
samples_padded
|
samples_padded
|
||||||
};
|
};
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user