mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 03:54:56 +00:00
Add a cuda kernel for avg-pool2d. (#440)
* Add a cuda kernel for avg-pool2d. * Avoid running out of bounds. * Finish wiring the avg pool kernel + add some testing. * Support for max-pool + testing.
This commit is contained in:
@ -960,6 +960,64 @@ impl<'a> Map2 for Conv2D<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
enum PoolOp {
|
||||
Max,
|
||||
Avg,
|
||||
}
|
||||
|
||||
struct Pool2D {
|
||||
w_k: usize,
|
||||
h_k: usize,
|
||||
w_stride: usize,
|
||||
h_stride: usize,
|
||||
op: PoolOp,
|
||||
}
|
||||
|
||||
impl Map1 for Pool2D {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
&self,
|
||||
inp: &CudaSlice<T>,
|
||||
dev: &CudaDevice,
|
||||
inp_l: &Layout,
|
||||
) -> Result<CudaSlice<T>> {
|
||||
// Kernel shape: (c_out, c_in_k, w_k, h_k)
|
||||
let inp = &inp.slice(inp_l.start_offset()..);
|
||||
let shape = inp_l.shape();
|
||||
let dims = shape.dims();
|
||||
let ds = if dims.len() == 4 {
|
||||
[dims, inp_l.stride()].concat()
|
||||
} else {
|
||||
panic!("unexpected input shape for conv1d {dims:?}")
|
||||
};
|
||||
let el = shape.elem_count();
|
||||
let out_w = (dims[2] - self.w_k) / self.w_stride + 1;
|
||||
let out_h = (dims[3] - self.h_k) / self.h_stride + 1;
|
||||
let dst_el = out_w * out_h * dims[0] * dims[1];
|
||||
let cfg = LaunchConfig::for_num_elems(dst_el as u32);
|
||||
let kname = match self.op {
|
||||
PoolOp::Max => "max_pool2d",
|
||||
PoolOp::Avg => "avg_pool2d",
|
||||
};
|
||||
let func = dev.get_or_load_func(&kernel_name::<T>(kname), kernels::CONV)?;
|
||||
// SAFETY: Set later by running the kernel.
|
||||
let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
|
||||
let ds = dev.htod_copy(ds).w()?;
|
||||
let params = (
|
||||
el,
|
||||
self.w_k,
|
||||
self.h_k,
|
||||
self.w_stride,
|
||||
self.h_stride,
|
||||
&ds,
|
||||
inp,
|
||||
&out,
|
||||
);
|
||||
// SAFETY: ffi.
|
||||
unsafe { func.launch(cfg, params) }.w()?;
|
||||
Ok(out)
|
||||
}
|
||||
}
|
||||
|
||||
struct WhereCond<'a>(&'a CudaStorage, &'a Layout);
|
||||
impl<'a> Map2 for WhereCond<'a> {
|
||||
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
|
||||
@ -1429,12 +1487,30 @@ impl BackendStorage for CudaStorage {
|
||||
Ok(Self { slice, device })
|
||||
}
|
||||
|
||||
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
|
||||
todo!()
|
||||
fn avg_pool2d(&self, l: &Layout, k: (usize, usize), stride: (usize, usize)) -> Result<Self> {
|
||||
let device = self.device().clone();
|
||||
let slice = Pool2D {
|
||||
w_k: k.0,
|
||||
h_k: k.1,
|
||||
w_stride: stride.0,
|
||||
h_stride: stride.1,
|
||||
op: PoolOp::Avg,
|
||||
}
|
||||
.map(&self.slice, &device, l)?;
|
||||
Ok(Self { slice, device })
|
||||
}
|
||||
|
||||
fn max_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
|
||||
todo!()
|
||||
fn max_pool2d(&self, l: &Layout, k: (usize, usize), stride: (usize, usize)) -> Result<Self> {
|
||||
let device = self.device().clone();
|
||||
let slice = Pool2D {
|
||||
w_k: k.0,
|
||||
h_k: k.1,
|
||||
w_stride: stride.0,
|
||||
h_stride: stride.1,
|
||||
op: PoolOp::Max,
|
||||
}
|
||||
.map(&self.slice, &device, l)?;
|
||||
Ok(Self { slice, device })
|
||||
}
|
||||
|
||||
fn upsample_nearest2d(&self, _: &Layout, _: usize, _: usize) -> Result<Self> {
|
||||
|
Reference in New Issue
Block a user