mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 03:54:56 +00:00
Add a cuda kernel for avg-pool2d. (#440)
* Add a cuda kernel for avg-pool2d. * Avoid running out of bounds. * Finish wiring the avg pool kernel + add some testing. * Support for max-pool + testing.
This commit is contained in:
@ -1,25 +1,22 @@
|
||||
mod test_utils;
|
||||
use candle_core::{Device, IndexOp, Tensor};
|
||||
use candle_core::{Device, IndexOp, Result, Tensor};
|
||||
|
||||
// https://github.com/huggingface/candle/issues/364
|
||||
#[test]
|
||||
fn avg_pool2d() -> anyhow::Result<()> {
|
||||
fn avg_pool2d(dev: &Device) -> Result<()> {
|
||||
let data: Vec<f32> = vec![
|
||||
1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
|
||||
];
|
||||
let t = Tensor::from_vec(data, (1, 1, 4, 4), &Device::Cpu)?;
|
||||
|
||||
let t = Tensor::from_vec(data, (1, 1, 4, 4), dev)?;
|
||||
let pool = t.avg_pool2d((2, 2), (2, 2))?.squeeze(0)?.squeeze(0)?;
|
||||
assert_eq!(pool.to_vec2::<f32>()?, [[0.5f32, 1.], [1., 1.]]);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn max_pool2d() -> anyhow::Result<()> {
|
||||
fn max_pool2d(dev: &Device) -> Result<()> {
|
||||
let data: Vec<f32> = vec![
|
||||
1., 2., 1., 3., 0., 0., 1., 1., 1., 1., 1., 1., 5., 1., 1., 1.,
|
||||
];
|
||||
let t = Tensor::from_vec(data, (1, 1, 4, 4), &Device::Cpu)?;
|
||||
let t = Tensor::from_vec(data, (1, 1, 4, 4), dev)?;
|
||||
|
||||
let pool = t.max_pool2d((2, 2), (2, 2))?.squeeze(0)?.squeeze(0)?;
|
||||
assert_eq!(pool.to_vec2::<f32>()?, [[2f32, 3.], [5., 1.]]);
|
||||
@ -35,8 +32,7 @@ print(t.flatten())
|
||||
res = torch.nn.functional.avg_pool2d(t, 2)
|
||||
print(res)
|
||||
*/
|
||||
#[test]
|
||||
fn avg_pool2d_pytorch() -> anyhow::Result<()> {
|
||||
fn avg_pool2d_pytorch(dev: &Device) -> Result<()> {
|
||||
let t = Tensor::new(
|
||||
&[
|
||||
0.4056f32, -0.8689, -0.0773, -1.5630, -2.8012, -1.5059, 0.3972, 1.0852, 0.4997, 3.0616,
|
||||
@ -44,7 +40,7 @@ fn avg_pool2d_pytorch() -> anyhow::Result<()> {
|
||||
1.2279, -0.9287, -1.7030, 0.1370, 0.6047, 0.3770, -0.6266, 0.3529, 2.2013, -0.6836,
|
||||
0.2477, 1.3127,
|
||||
],
|
||||
&Device::Cpu,
|
||||
dev,
|
||||
)?
|
||||
.reshape((1, 2, 4, 4))?;
|
||||
let pool = t.avg_pool2d((2, 2), (2, 2))?.squeeze(0)?;
|
||||
@ -61,7 +57,7 @@ fn avg_pool2d_pytorch() -> anyhow::Result<()> {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn upsample_nearest2d() -> anyhow::Result<()> {
|
||||
fn upsample_nearest2d() -> Result<()> {
|
||||
let t = Tensor::arange(0f32, 6f32, &Device::Cpu)?.reshape((1, 1, 2, 3))?;
|
||||
let upsampled = t.upsample_nearest2d(4, 6)?.i(0)?.i(0)?;
|
||||
assert_eq!(
|
||||
@ -79,3 +75,11 @@ fn upsample_nearest2d() -> anyhow::Result<()> {
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
test_device!(avg_pool2d, avg_pool2d_cpu, avg_pool2d_gpu);
|
||||
test_device!(
|
||||
avg_pool2d_pytorch,
|
||||
avg_pool2d_pytorch_cpu,
|
||||
avg_pool2d_pytorch_gpu
|
||||
);
|
||||
test_device!(max_pool2d, max_pool2d_cpu, max_pool2d_gpu);
|
||||
|
Reference in New Issue
Block a user