Add a yolo-v3 example. (#528)

* Add a couple functions required for yolo.

* Add the yolo-v3 example.

* Add minimum and maximum.

* Use the newly introduced maximum.

* Cuda support for min/max + add some testing.

* Allow for more tests to work with accelerate.

* Fix a typo.
This commit is contained in:
Laurent Mazare
2023-08-20 18:19:37 +01:00
committed by GitHub
parent e3d2786ffb
commit a1812f934f
24 changed files with 1497 additions and 8 deletions

View File

@ -0,0 +1,145 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
mod coco_classes;
mod darknet;
use anyhow::Result;
use candle::{DType, Device, Tensor};
use candle_nn::{Module, VarBuilder};
use clap::Parser;
const CONFIG_NAME: &str = "candle-examples/examples/yolo/yolo-v3.cfg";
const CONFIDENCE_THRESHOLD: f64 = 0.5;
const NMS_THRESHOLD: f64 = 0.4;
#[derive(Debug, Clone, Copy)]
struct Bbox {
xmin: f64,
ymin: f64,
xmax: f64,
ymax: f64,
confidence: f64,
}
// Intersection over union of two bounding boxes.
fn iou(b1: &Bbox, b2: &Bbox) -> f64 {
let b1_area = (b1.xmax - b1.xmin + 1.) * (b1.ymax - b1.ymin + 1.);
let b2_area = (b2.xmax - b2.xmin + 1.) * (b2.ymax - b2.ymin + 1.);
let i_xmin = b1.xmin.max(b2.xmin);
let i_xmax = b1.xmax.min(b2.xmax);
let i_ymin = b1.ymin.max(b2.ymin);
let i_ymax = b1.ymax.min(b2.ymax);
let i_area = (i_xmax - i_xmin + 1.).max(0.) * (i_ymax - i_ymin + 1.).max(0.);
i_area / (b1_area + b2_area - i_area)
}
// Assumes x1 <= x2 and y1 <= y2
pub fn draw_rect(_: &mut Tensor, _x1: usize, _x2: usize, _y1: usize, _y2: usize) {
todo!()
}
pub fn report(pred: &Tensor, img: &Tensor, w: usize, h: usize) -> Result<Tensor> {
let (npreds, pred_size) = pred.dims2()?;
let nclasses = pred_size - 5;
// The bounding boxes grouped by (maximum) class index.
let mut bboxes: Vec<Vec<Bbox>> = (0..nclasses).map(|_| vec![]).collect();
// Extract the bounding boxes for which confidence is above the threshold.
for index in 0..npreds {
let pred = Vec::<f64>::try_from(pred.get(index)?)?;
let confidence = pred[4];
if confidence > CONFIDENCE_THRESHOLD {
let mut class_index = 0;
for i in 0..nclasses {
if pred[5 + i] > pred[5 + class_index] {
class_index = i
}
}
if pred[class_index + 5] > 0. {
let bbox = Bbox {
xmin: pred[0] - pred[2] / 2.,
ymin: pred[1] - pred[3] / 2.,
xmax: pred[0] + pred[2] / 2.,
ymax: pred[1] + pred[3] / 2.,
confidence,
};
bboxes[class_index].push(bbox)
}
}
}
// Perform non-maximum suppression.
for bboxes_for_class in bboxes.iter_mut() {
bboxes_for_class.sort_by(|b1, b2| b2.confidence.partial_cmp(&b1.confidence).unwrap());
let mut current_index = 0;
for index in 0..bboxes_for_class.len() {
let mut drop = false;
for prev_index in 0..current_index {
let iou = iou(&bboxes_for_class[prev_index], &bboxes_for_class[index]);
if iou > NMS_THRESHOLD {
drop = true;
break;
}
}
if !drop {
bboxes_for_class.swap(current_index, index);
current_index += 1;
}
}
bboxes_for_class.truncate(current_index);
}
// Annotate the original image and print boxes information.
let (_, initial_h, initial_w) = img.dims3()?;
let mut img = (img.to_dtype(DType::F32)? * (1. / 255.))?;
let w_ratio = initial_w as f64 / w as f64;
let h_ratio = initial_h as f64 / h as f64;
for (class_index, bboxes_for_class) in bboxes.iter().enumerate() {
for b in bboxes_for_class.iter() {
println!("{}: {:?}", coco_classes::NAMES[class_index], b);
let xmin = ((b.xmin * w_ratio) as usize).clamp(0, initial_w - 1);
let ymin = ((b.ymin * h_ratio) as usize).clamp(0, initial_h - 1);
let xmax = ((b.xmax * w_ratio) as usize).clamp(0, initial_w - 1);
let ymax = ((b.ymax * h_ratio) as usize).clamp(0, initial_h - 1);
draw_rect(&mut img, xmin, xmax, ymin, ymax.min(ymin + 2));
draw_rect(&mut img, xmin, xmax, ymin.max(ymax - 2), ymax);
draw_rect(&mut img, xmin, xmax.min(xmin + 2), ymin, ymax);
draw_rect(&mut img, xmin.max(xmax - 2), xmax, ymin, ymax);
}
}
Ok((img * 255.)?.to_dtype(DType::U8)?)
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Model weights, in safetensors format.
#[arg(long)]
model: String,
images: Vec<String>,
}
pub fn main() -> Result<()> {
let args = Args::parse();
// Create the model and load the weights from the file.
let weights = unsafe { candle::safetensors::MmapedFile::new(&args.model)? };
let weights = weights.deserialize()?;
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, &Device::Cpu);
let darknet = darknet::parse_config(CONFIG_NAME)?;
let model = darknet.build_model(vb)?;
for image in args.images.iter() {
// Load the image file and resize it.
let net_width = darknet.width()?;
let net_height = darknet.height()?;
let image = candle_examples::load_image_and_resize(image, net_width, net_height)?;
let image = (image.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
let predictions = model.forward(&image)?.squeeze(0)?;
let _image = report(&predictions, &image, net_width, net_height)?;
println!("converted {image}");
}
Ok(())
}