mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 10:26:33 +00:00
Add Mobilenet v4 (#2325)
* Support different resolutions in load_image() * Added MobilenetV4 model. * Add MobileNetv4 to README
This commit is contained in:
@ -236,7 +236,7 @@ If you have an addition to this list, please submit a pull request.
|
|||||||
- MetaVoice-1B, text-to-speech model.
|
- MetaVoice-1B, text-to-speech model.
|
||||||
- Computer Vision Models.
|
- Computer Vision Models.
|
||||||
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT, VGG, RepVGG, ConvNeXT,
|
- DINOv2, ConvMixer, EfficientNet, ResNet, ViT, VGG, RepVGG, ConvNeXT,
|
||||||
ConvNeXTv2, MobileOne, EfficientVit (MSRA).
|
ConvNeXTv2, MobileOne, EfficientVit (MSRA), MobileNetv4.
|
||||||
- yolo-v3, yolo-v8.
|
- yolo-v3, yolo-v8.
|
||||||
- Segment-Anything Model (SAM).
|
- Segment-Anything Model (SAM).
|
||||||
- SegFormer.
|
- SegFormer.
|
||||||
|
18
candle-examples/examples/mobilenetv4/README.md
Normal file
18
candle-examples/examples/mobilenetv4/README.md
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
# candle-mobilenetv4
|
||||||
|
|
||||||
|
[MobileNetV4 - Universal Models for the Mobile Ecosystem](https://arxiv.org/abs/2404.10518)
|
||||||
|
This candle implementation uses pre-trained MobileNetV4 models from timm for inference.
|
||||||
|
The classification head has been trained on the ImageNet dataset and returns the probabilities for the top-5 classes.
|
||||||
|
|
||||||
|
## Running an example
|
||||||
|
|
||||||
|
```
|
||||||
|
$ cargo run --example mobilenetv4 --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg --which medium
|
||||||
|
loaded image Tensor[dims 3, 256, 256; f32]
|
||||||
|
model built
|
||||||
|
unicycle, monocycle : 20.18%
|
||||||
|
mountain bike, all-terrain bike, off-roader: 19.77%
|
||||||
|
bicycle-built-for-two, tandem bicycle, tandem: 15.91%
|
||||||
|
crash helmet : 1.15%
|
||||||
|
tricycle, trike, velocipede: 0.67%
|
||||||
|
```
|
106
candle-examples/examples/mobilenetv4/main.rs
Normal file
106
candle-examples/examples/mobilenetv4/main.rs
Normal file
@ -0,0 +1,106 @@
|
|||||||
|
#[cfg(feature = "mkl")]
|
||||||
|
extern crate intel_mkl_src;
|
||||||
|
|
||||||
|
#[cfg(feature = "accelerate")]
|
||||||
|
extern crate accelerate_src;
|
||||||
|
|
||||||
|
use clap::{Parser, ValueEnum};
|
||||||
|
|
||||||
|
use candle::{DType, IndexOp, D};
|
||||||
|
use candle_nn::{Module, VarBuilder};
|
||||||
|
use candle_transformers::models::mobilenetv4;
|
||||||
|
|
||||||
|
#[derive(Clone, Copy, Debug, ValueEnum)]
|
||||||
|
enum Which {
|
||||||
|
Small,
|
||||||
|
Medium,
|
||||||
|
Large,
|
||||||
|
HybridMedium,
|
||||||
|
HybridLarge,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Which {
|
||||||
|
fn model_filename(&self) -> String {
|
||||||
|
let name = match self {
|
||||||
|
Self::Small => "conv_small.e2400_r224",
|
||||||
|
Self::Medium => "conv_medium.e500_r256",
|
||||||
|
Self::HybridMedium => "hybrid_medium.ix_e550_r256",
|
||||||
|
Self::Large => "conv_large.e600_r384",
|
||||||
|
Self::HybridLarge => "hybrid_large.ix_e600_r384",
|
||||||
|
};
|
||||||
|
format!("timm/mobilenetv4_{}_in1k", name)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn resolution(&self) -> u32 {
|
||||||
|
match self {
|
||||||
|
Self::Small => 224,
|
||||||
|
Self::Medium => 256,
|
||||||
|
Self::HybridMedium => 256,
|
||||||
|
Self::Large => 384,
|
||||||
|
Self::HybridLarge => 384,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fn config(&self) -> mobilenetv4::Config {
|
||||||
|
match self {
|
||||||
|
Self::Small => mobilenetv4::Config::small(),
|
||||||
|
Self::Medium => mobilenetv4::Config::medium(),
|
||||||
|
Self::HybridMedium => mobilenetv4::Config::hybrid_medium(),
|
||||||
|
Self::Large => mobilenetv4::Config::large(),
|
||||||
|
Self::HybridLarge => mobilenetv4::Config::hybrid_large(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Parser)]
|
||||||
|
struct Args {
|
||||||
|
#[arg(long)]
|
||||||
|
model: Option<String>,
|
||||||
|
|
||||||
|
#[arg(long)]
|
||||||
|
image: String,
|
||||||
|
|
||||||
|
/// Run on CPU rather than on GPU.
|
||||||
|
#[arg(long)]
|
||||||
|
cpu: bool,
|
||||||
|
|
||||||
|
#[arg(value_enum, long, default_value_t=Which::Small)]
|
||||||
|
which: Which,
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn main() -> anyhow::Result<()> {
|
||||||
|
let args = Args::parse();
|
||||||
|
|
||||||
|
let device = candle_examples::device(args.cpu)?;
|
||||||
|
|
||||||
|
let image = candle_examples::imagenet::load_image(args.image, args.which.resolution())?
|
||||||
|
.to_device(&device)?;
|
||||||
|
println!("loaded image {image:?}");
|
||||||
|
|
||||||
|
let model_file = match args.model {
|
||||||
|
None => {
|
||||||
|
let model_name = args.which.model_filename();
|
||||||
|
let api = hf_hub::api::sync::Api::new()?;
|
||||||
|
let api = api.model(model_name);
|
||||||
|
api.get("model.safetensors")?
|
||||||
|
}
|
||||||
|
Some(model) => model.into(),
|
||||||
|
};
|
||||||
|
|
||||||
|
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
|
||||||
|
let model = mobilenetv4::mobilenetv4(&args.which.config(), 1000, vb)?;
|
||||||
|
println!("model built");
|
||||||
|
let logits = model.forward(&image.unsqueeze(0)?)?;
|
||||||
|
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
|
||||||
|
.i(0)?
|
||||||
|
.to_vec1::<f32>()?;
|
||||||
|
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
|
||||||
|
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
|
||||||
|
for &(category_idx, pr) in prs.iter().take(5) {
|
||||||
|
println!(
|
||||||
|
"{:24}: {:.2}%",
|
||||||
|
candle_examples::imagenet::CLASSES[category_idx],
|
||||||
|
100. * pr
|
||||||
|
);
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
@ -1,15 +1,16 @@
|
|||||||
use candle::{Device, Result, Tensor};
|
use candle::{Device, Result, Tensor};
|
||||||
|
|
||||||
/// Loads an image from disk using the image crate, this returns a tensor with shape
|
/// Loads an image from disk using the image crate at the requested resolution.
|
||||||
/// (3, 224, 224). imagenet normalization is applied.
|
// This returns a tensor with shape (3, res, res). imagenet normalization is applied.
|
||||||
pub fn load_image224<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> {
|
pub fn load_image<P: AsRef<std::path::Path>>(p: P, res: u32) -> Result<Tensor> {
|
||||||
let img = image::io::Reader::open(p)?
|
let img = image::io::Reader::open(p)?
|
||||||
.decode()
|
.decode()
|
||||||
.map_err(candle::Error::wrap)?
|
.map_err(candle::Error::wrap)?
|
||||||
.resize_to_fill(224, 224, image::imageops::FilterType::Triangle);
|
.resize_to_fill(res, res, image::imageops::FilterType::Triangle);
|
||||||
let img = img.to_rgb8();
|
let img = img.to_rgb8();
|
||||||
let data = img.into_raw();
|
let data = img.into_raw();
|
||||||
let data = Tensor::from_vec(data, (224, 224, 3), &Device::Cpu)?.permute((2, 0, 1))?;
|
let data = Tensor::from_vec(data, (res as usize, res as usize, 3), &Device::Cpu)?
|
||||||
|
.permute((2, 0, 1))?;
|
||||||
let mean = Tensor::new(&[0.485f32, 0.456, 0.406], &Device::Cpu)?.reshape((3, 1, 1))?;
|
let mean = Tensor::new(&[0.485f32, 0.456, 0.406], &Device::Cpu)?.reshape((3, 1, 1))?;
|
||||||
let std = Tensor::new(&[0.229f32, 0.224, 0.225], &Device::Cpu)?.reshape((3, 1, 1))?;
|
let std = Tensor::new(&[0.229f32, 0.224, 0.225], &Device::Cpu)?.reshape((3, 1, 1))?;
|
||||||
(data.to_dtype(candle::DType::F32)? / 255.)?
|
(data.to_dtype(candle::DType::F32)? / 255.)?
|
||||||
@ -17,22 +18,17 @@ pub fn load_image224<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> {
|
|||||||
.broadcast_div(&std)
|
.broadcast_div(&std)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Loads an image from disk using the image crate, this returns a tensor with shape
|
||||||
|
/// (3, 224, 224). imagenet normalization is applied.
|
||||||
|
pub fn load_image224<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> {
|
||||||
|
load_image(p, 224)
|
||||||
|
}
|
||||||
|
|
||||||
/// Loads an image from disk using the image crate, this returns a tensor with shape
|
/// Loads an image from disk using the image crate, this returns a tensor with shape
|
||||||
/// (3, 518, 518). imagenet normalization is applied.
|
/// (3, 518, 518). imagenet normalization is applied.
|
||||||
/// The model dinov2 reg4 analyzes images with dimensions 3x518x518 (resulting in 37x37 transformer tokens).
|
/// The model dinov2 reg4 analyzes images with dimensions 3x518x518 (resulting in 37x37 transformer tokens).
|
||||||
pub fn load_image518<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> {
|
pub fn load_image518<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> {
|
||||||
let img = image::io::Reader::open(p)?
|
load_image(p, 518)
|
||||||
.decode()
|
|
||||||
.map_err(candle::Error::wrap)?
|
|
||||||
.resize_to_fill(518, 518, image::imageops::FilterType::Triangle);
|
|
||||||
let img = img.to_rgb8();
|
|
||||||
let data = img.into_raw();
|
|
||||||
let data = Tensor::from_vec(data, (518, 518, 3), &Device::Cpu)?.permute((2, 0, 1))?;
|
|
||||||
let mean = Tensor::new(&[0.485f32, 0.456, 0.406], &Device::Cpu)?.reshape((3, 1, 1))?;
|
|
||||||
let std = Tensor::new(&[0.229f32, 0.224, 0.225], &Device::Cpu)?.reshape((3, 1, 1))?;
|
|
||||||
(data.to_dtype(candle::DType::F32)? / 255.)?
|
|
||||||
.broadcast_sub(&mean)?
|
|
||||||
.broadcast_div(&std)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
pub const CLASS_COUNT: i64 = 1000;
|
pub const CLASS_COUNT: i64 = 1000;
|
||||||
|
800
candle-transformers/src/models/mobilenetv4.rs
Normal file
800
candle-transformers/src/models/mobilenetv4.rs
Normal file
@ -0,0 +1,800 @@
|
|||||||
|
//! MobileNet-v4 inference implementation based on timm.
|
||||||
|
//!
|
||||||
|
//! See "MobileNetV4 - Universal Models for the Mobile Ecosystem"
|
||||||
|
//! https://arxiv.org/abs/2404.10518
|
||||||
|
//!
|
||||||
|
//! https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/mobilenetv3.py
|
||||||
|
|
||||||
|
use candle::{Result, Tensor, D};
|
||||||
|
use candle_nn::{
|
||||||
|
batch_norm, conv2d_no_bias, linear, ops::softmax, Activation, Conv2dConfig, Func, VarBuilder,
|
||||||
|
};
|
||||||
|
|
||||||
|
#[derive(Clone, Debug)]
|
||||||
|
enum BlockType {
|
||||||
|
Convolutional {
|
||||||
|
out_channels: usize,
|
||||||
|
kernel: usize,
|
||||||
|
stride: usize,
|
||||||
|
},
|
||||||
|
UniversalBottleneck {
|
||||||
|
out_channels: usize,
|
||||||
|
start_kernel: usize,
|
||||||
|
mid_kernel: usize,
|
||||||
|
stride: usize,
|
||||||
|
expand: usize,
|
||||||
|
},
|
||||||
|
EdgeResidual {
|
||||||
|
out_channels: usize,
|
||||||
|
kernel: usize,
|
||||||
|
stride: usize,
|
||||||
|
expand: usize,
|
||||||
|
},
|
||||||
|
Attention {
|
||||||
|
out_channels: usize,
|
||||||
|
heads: usize,
|
||||||
|
kernel: usize,
|
||||||
|
stride: usize,
|
||||||
|
kv_dim: usize,
|
||||||
|
kv_stride: usize,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Clone, Debug)]
|
||||||
|
pub struct Config {
|
||||||
|
stem_dim: usize,
|
||||||
|
activation: Activation,
|
||||||
|
stages: [Vec<BlockType>; 5],
|
||||||
|
}
|
||||||
|
|
||||||
|
#[rustfmt::skip]
|
||||||
|
impl Config {
|
||||||
|
pub fn small() -> Self {
|
||||||
|
Self {
|
||||||
|
stem_dim: 32,
|
||||||
|
activation: Activation::Relu,
|
||||||
|
stages: [
|
||||||
|
vec![
|
||||||
|
BlockType::Convolutional { out_channels: 32, kernel: 3, stride: 2},
|
||||||
|
BlockType::Convolutional { out_channels: 32, kernel: 1, stride: 1},
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::Convolutional { out_channels: 96, kernel: 3, stride: 2},
|
||||||
|
BlockType::Convolutional { out_channels: 64, kernel: 1, stride: 1},
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 5, mid_kernel: 5, stride: 2, expand: 3},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 0, mid_kernel: 3, stride: 1, expand: 2},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 0, mid_kernel: 3, stride: 1, expand: 2},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 0, mid_kernel: 3, stride: 1, expand: 2},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 0, mid_kernel: 3, stride: 1, expand: 2},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 128, start_kernel: 3, mid_kernel: 3, stride: 2, expand: 6},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 128, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 128, start_kernel: 0, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 128, start_kernel: 0, mid_kernel: 5, stride: 1, expand: 3},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 128, start_kernel: 0, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 128, start_kernel: 0, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::Convolutional { out_channels: 960, kernel: 1, stride: 1},
|
||||||
|
],
|
||||||
|
],
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn medium() -> Self {
|
||||||
|
Self {
|
||||||
|
stem_dim: 32,
|
||||||
|
activation: Activation::Relu,
|
||||||
|
stages: [
|
||||||
|
vec![
|
||||||
|
BlockType::EdgeResidual { out_channels: 48, kernel: 3, stride: 2, expand: 4},
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 80, start_kernel: 3, mid_kernel: 5, stride: 2, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 80, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 2},
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 5, stride: 2, expand: 6},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 0, mid_kernel: 0, stride: 1, expand: 2},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 5, stride: 2, expand: 6},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 0, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 2},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 0, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 0, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 2},
|
||||||
|
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::Convolutional { out_channels: 960, kernel: 1, stride: 1},
|
||||||
|
],
|
||||||
|
],
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn hybrid_medium() -> Self {
|
||||||
|
Self {
|
||||||
|
stem_dim: 32,
|
||||||
|
activation: Activation::Relu,
|
||||||
|
stages: [
|
||||||
|
vec![
|
||||||
|
BlockType::EdgeResidual { out_channels: 48, kernel: 3, stride: 2, expand: 4},
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 80, start_kernel: 3, mid_kernel: 5, stride: 2, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 80, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 2},
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 5, stride: 2, expand: 6},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 0, mid_kernel: 0, stride: 1, expand: 2},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::Attention { out_channels: 160, heads: 4, kernel: 3, stride: 1, kv_stride:2, kv_dim: 64},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::Attention { out_channels: 160, heads: 4, kernel: 3, stride: 1, kv_stride:2, kv_dim: 64},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::Attention { out_channels: 160, heads: 4, kernel: 3, stride: 1, kv_stride:2, kv_dim: 64},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::Attention { out_channels: 160, heads: 4, kernel: 3, stride: 1, kv_stride:2, kv_dim: 64},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 160, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
],
|
||||||
|
|
||||||
|
vec![
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 5, stride: 2, expand: 6},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 0, mid_kernel: 0, stride: 1, expand: 2},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 2},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 0, mid_kernel: 0, stride: 1, expand: 2},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 0, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::Attention { out_channels: 256, heads: 4, kernel: 3, stride: 1, kv_stride:1, kv_dim: 64},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::Attention { out_channels: 256, heads: 4, kernel: 3, stride: 1, kv_stride:1, kv_dim: 64},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::Attention { out_channels: 256, heads: 4, kernel: 3, stride: 1, kv_stride:1, kv_dim: 64},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::Attention { out_channels: 256, heads: 4, kernel: 3, stride: 1, kv_stride:1, kv_dim: 64},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 256, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::Convolutional { out_channels: 960, kernel: 1, stride: 1},
|
||||||
|
],
|
||||||
|
],
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn large() -> Self {
|
||||||
|
Self {
|
||||||
|
stem_dim: 24,
|
||||||
|
activation: Activation::Relu,
|
||||||
|
stages: [
|
||||||
|
vec![
|
||||||
|
BlockType::EdgeResidual { out_channels: 48, kernel: 3, stride: 2, expand: 4},
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 3, mid_kernel: 5, stride: 2, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 5, stride: 2, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 2, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::Convolutional { out_channels: 960, kernel: 1, stride: 1},
|
||||||
|
],
|
||||||
|
],
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn hybrid_large() -> Self {
|
||||||
|
Self {
|
||||||
|
stem_dim: 24,
|
||||||
|
activation: Activation::Gelu,
|
||||||
|
stages: [
|
||||||
|
vec![
|
||||||
|
BlockType::EdgeResidual { out_channels: 48, kernel: 3, stride: 2, expand: 4},
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 3, mid_kernel: 5, stride: 2, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 96, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 5, stride: 2, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::Attention { out_channels: 192, heads: 8, kernel: 3, stride: 1, kv_stride:2, kv_dim: 48},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::Attention { out_channels: 192, heads: 8, kernel: 3, stride: 1, kv_stride:2, kv_dim: 48},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::Attention { out_channels: 192, heads: 8, kernel: 3, stride: 1, kv_stride:2, kv_dim: 48},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::Attention { out_channels: 192, heads: 8, kernel: 3, stride: 1, kv_stride:2, kv_dim: 48},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 192, start_kernel: 3, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
],
|
||||||
|
|
||||||
|
vec![
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 2, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 3, stride: 1, expand: 4},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 5, stride: 1, expand: 4},
|
||||||
|
BlockType::Attention { out_channels: 512, heads: 8, kernel: 3, stride: 1, kv_stride:1, kv_dim: 64},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::Attention { out_channels: 512, heads: 8, kernel: 3, stride: 1, kv_stride:1, kv_dim: 64},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::Attention { out_channels: 512, heads: 8, kernel: 3, stride: 1, kv_stride:1, kv_dim: 64},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
BlockType::Attention { out_channels: 512, heads: 8, kernel: 3, stride: 1, kv_stride:1, kv_dim: 64},
|
||||||
|
BlockType::UniversalBottleneck { out_channels: 512, start_kernel: 5, mid_kernel: 0, stride: 1, expand: 4},
|
||||||
|
],
|
||||||
|
vec![
|
||||||
|
BlockType::Convolutional { out_channels: 960, kernel: 1, stride: 1},
|
||||||
|
],
|
||||||
|
],
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn depthwise_conv(
|
||||||
|
channels: usize,
|
||||||
|
kernel: usize,
|
||||||
|
stride: usize,
|
||||||
|
padding: usize,
|
||||||
|
vb: VarBuilder,
|
||||||
|
) -> Result<Func<'static>> {
|
||||||
|
let conv2d_cfg = Conv2dConfig {
|
||||||
|
stride,
|
||||||
|
padding,
|
||||||
|
groups: channels,
|
||||||
|
..Default::default()
|
||||||
|
};
|
||||||
|
|
||||||
|
let bn = batch_norm(channels, 1e-5, vb.pp("bn"))?;
|
||||||
|
let conv = conv2d_no_bias(channels, channels, kernel, conv2d_cfg, vb.pp("conv"))?;
|
||||||
|
|
||||||
|
Ok(Func::new(move |xs| xs.apply(&conv)?.apply_t(&bn, false)))
|
||||||
|
}
|
||||||
|
|
||||||
|
fn pointwise_conv(
|
||||||
|
in_channels: usize,
|
||||||
|
out_channels: usize,
|
||||||
|
vb: VarBuilder,
|
||||||
|
) -> Result<Func<'static>> {
|
||||||
|
let conv2d_cfg = Conv2dConfig {
|
||||||
|
..Default::default()
|
||||||
|
};
|
||||||
|
|
||||||
|
let bn = batch_norm(out_channels, 1e-5, vb.pp("bn"))?;
|
||||||
|
let conv = conv2d_no_bias(in_channels, out_channels, 1, conv2d_cfg, vb.pp("conv"))?;
|
||||||
|
|
||||||
|
Ok(Func::new(move |xs| xs.apply(&conv)?.apply_t(&bn, false)))
|
||||||
|
}
|
||||||
|
|
||||||
|
//Universal block that uses two pointwise convolutions and all combinations of two depthwise convolutions.
|
||||||
|
#[allow(clippy::too_many_arguments)]
|
||||||
|
fn universal_inverted_bottleneck_block(
|
||||||
|
cfg: &Config,
|
||||||
|
in_channels: usize,
|
||||||
|
out_channels: usize,
|
||||||
|
expand: usize,
|
||||||
|
start_kernel: usize,
|
||||||
|
mid_kernel: usize,
|
||||||
|
stride: usize,
|
||||||
|
vb: VarBuilder,
|
||||||
|
) -> Result<Func<'static>> {
|
||||||
|
let act = cfg.activation;
|
||||||
|
let skip_connection = (in_channels == out_channels) && (stride == 1);
|
||||||
|
|
||||||
|
let dw_start_stride = if mid_kernel > 0 { 1 } else { stride };
|
||||||
|
let dw_start = depthwise_conv(
|
||||||
|
in_channels,
|
||||||
|
start_kernel,
|
||||||
|
dw_start_stride,
|
||||||
|
start_kernel / 2,
|
||||||
|
vb.pp("dw_start"),
|
||||||
|
);
|
||||||
|
let pw_exp = pointwise_conv(in_channels, in_channels * expand, vb.pp("pw_exp"))?;
|
||||||
|
let dw_mid = depthwise_conv(
|
||||||
|
in_channels * expand,
|
||||||
|
mid_kernel,
|
||||||
|
stride,
|
||||||
|
mid_kernel / 2,
|
||||||
|
vb.pp("dw_mid"),
|
||||||
|
);
|
||||||
|
let pw_proj = pointwise_conv(in_channels * expand, out_channels, vb.pp("pw_proj"))?;
|
||||||
|
|
||||||
|
let gamma = vb.get(out_channels, "layer_scale.gamma");
|
||||||
|
|
||||||
|
Ok(Func::new(move |xs| {
|
||||||
|
let residual = xs.clone();
|
||||||
|
|
||||||
|
let mut xs = xs.clone();
|
||||||
|
|
||||||
|
if let Ok(f) = &dw_start {
|
||||||
|
xs = xs.apply(f)?;
|
||||||
|
}
|
||||||
|
|
||||||
|
xs = xs.apply(&pw_exp)?.apply(&act)?;
|
||||||
|
|
||||||
|
if let Ok(f) = &dw_mid {
|
||||||
|
xs = xs.apply(f)?.apply(&act)?;
|
||||||
|
}
|
||||||
|
|
||||||
|
xs = xs.apply(&pw_proj)?;
|
||||||
|
|
||||||
|
if let Ok(g) = &gamma {
|
||||||
|
xs = xs.broadcast_mul(&g.reshape((1, (), 1, 1))?)?;
|
||||||
|
};
|
||||||
|
|
||||||
|
if skip_connection {
|
||||||
|
xs = (xs + residual)?;
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(xs)
|
||||||
|
}))
|
||||||
|
}
|
||||||
|
|
||||||
|
// Convolutional block including norm and activation.
|
||||||
|
fn conv_block(
|
||||||
|
cfg: &Config,
|
||||||
|
in_channels: usize,
|
||||||
|
out_channels: usize,
|
||||||
|
kernel: usize,
|
||||||
|
stride: usize,
|
||||||
|
vb: VarBuilder,
|
||||||
|
) -> Result<Func<'static>> {
|
||||||
|
let conv2d_cfg = Conv2dConfig {
|
||||||
|
stride,
|
||||||
|
padding: kernel / 2,
|
||||||
|
..Default::default()
|
||||||
|
};
|
||||||
|
|
||||||
|
let act = cfg.activation;
|
||||||
|
let bn = batch_norm(out_channels, 1e-5, vb.pp("bn1"))?;
|
||||||
|
let conv = conv2d_no_bias(in_channels, out_channels, kernel, conv2d_cfg, vb.pp("conv"))?;
|
||||||
|
|
||||||
|
Ok(Func::new(move |xs| {
|
||||||
|
xs.apply(&conv)?.apply_t(&bn, false)?.apply(&act)
|
||||||
|
}))
|
||||||
|
}
|
||||||
|
|
||||||
|
fn edge_residual_block(
|
||||||
|
cfg: &Config,
|
||||||
|
in_channels: usize,
|
||||||
|
out_channels: usize,
|
||||||
|
kernel: usize,
|
||||||
|
stride: usize,
|
||||||
|
expand: usize,
|
||||||
|
vb: VarBuilder,
|
||||||
|
) -> Result<Func<'static>> {
|
||||||
|
let conv_exp_cfg = Conv2dConfig {
|
||||||
|
stride,
|
||||||
|
padding: kernel / 2,
|
||||||
|
..Default::default()
|
||||||
|
};
|
||||||
|
|
||||||
|
let conv_pwl_cfg = Conv2dConfig {
|
||||||
|
..Default::default()
|
||||||
|
};
|
||||||
|
|
||||||
|
let act = cfg.activation;
|
||||||
|
let mid_channels = in_channels * expand;
|
||||||
|
let conv_exp = conv2d_no_bias(
|
||||||
|
in_channels,
|
||||||
|
mid_channels,
|
||||||
|
kernel,
|
||||||
|
conv_exp_cfg,
|
||||||
|
vb.pp("conv_exp"),
|
||||||
|
)?;
|
||||||
|
let bn1 = batch_norm(mid_channels, 1e-5, vb.pp("bn1"))?;
|
||||||
|
|
||||||
|
let conv_pwl = conv2d_no_bias(
|
||||||
|
mid_channels,
|
||||||
|
out_channels,
|
||||||
|
1,
|
||||||
|
conv_pwl_cfg,
|
||||||
|
vb.pp("conv_pwl"),
|
||||||
|
)?;
|
||||||
|
let bn2 = batch_norm(out_channels, 1e-5, vb.pp("bn2"))?;
|
||||||
|
|
||||||
|
Ok(Func::new(move |xs| {
|
||||||
|
let xs = xs
|
||||||
|
.apply(&conv_exp)?
|
||||||
|
.apply_t(&bn1, false)?
|
||||||
|
.apply(&act)?
|
||||||
|
.apply(&conv_pwl)?
|
||||||
|
.apply_t(&bn2, false)?;
|
||||||
|
|
||||||
|
Ok(xs)
|
||||||
|
}))
|
||||||
|
}
|
||||||
|
|
||||||
|
fn reshape_kv(t: &Tensor) -> Result<Tensor> {
|
||||||
|
let d = t.dims4()?;
|
||||||
|
let t = t
|
||||||
|
.reshape((d.0, d.1, ()))?
|
||||||
|
.transpose(1, 2)?
|
||||||
|
.unsqueeze(1)?
|
||||||
|
.contiguous()?;
|
||||||
|
Ok(t)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn reshape_query(t: &Tensor, heads: usize, kv_dim: usize) -> Result<Tensor> {
|
||||||
|
let d = t.dims4()?;
|
||||||
|
|
||||||
|
let t = t
|
||||||
|
.reshape((d.0, heads, kv_dim, ()))?
|
||||||
|
.transpose(D::Minus1, D::Minus2)?
|
||||||
|
.contiguous()?;
|
||||||
|
Ok(t)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn reshape_output(t: &Tensor, heads: usize, h: usize, w: usize) -> Result<Tensor> {
|
||||||
|
let d = t.dims4()?;
|
||||||
|
let t = t.transpose(1, 2)?;
|
||||||
|
let t = t
|
||||||
|
.reshape((d.0, h, w, d.3 * heads))?
|
||||||
|
.permute((0, 3, 1, 2))?
|
||||||
|
.contiguous()?;
|
||||||
|
Ok(t)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Mobile multi-query attention
|
||||||
|
#[allow(clippy::too_many_arguments)]
|
||||||
|
fn mqa_block(
|
||||||
|
in_channels: usize,
|
||||||
|
out_channels: usize,
|
||||||
|
heads: usize,
|
||||||
|
kernel: usize,
|
||||||
|
stride: usize,
|
||||||
|
kv_dim: usize,
|
||||||
|
kv_stride: usize,
|
||||||
|
vb: VarBuilder,
|
||||||
|
) -> Result<Func<'static>> {
|
||||||
|
let down_conv2d_cfg = Conv2dConfig {
|
||||||
|
stride: kv_stride,
|
||||||
|
padding: kernel / 2,
|
||||||
|
groups: in_channels,
|
||||||
|
..Default::default()
|
||||||
|
};
|
||||||
|
|
||||||
|
let proj_conv2d_cfg = Conv2dConfig {
|
||||||
|
stride,
|
||||||
|
..Default::default()
|
||||||
|
};
|
||||||
|
|
||||||
|
let skip_connection = (in_channels == out_channels) && (stride == 1);
|
||||||
|
let gamma = vb.get(out_channels, "layer_scale.gamma");
|
||||||
|
let norm = batch_norm(out_channels, 1e-5, vb.pp("norm"))?;
|
||||||
|
let scale = (kv_dim as f64).powf(-0.5);
|
||||||
|
|
||||||
|
let vb = vb.pp("attn");
|
||||||
|
|
||||||
|
let query_proj = conv2d_no_bias(
|
||||||
|
out_channels,
|
||||||
|
kv_dim * heads,
|
||||||
|
1,
|
||||||
|
proj_conv2d_cfg,
|
||||||
|
vb.pp("query.proj"),
|
||||||
|
)?;
|
||||||
|
|
||||||
|
let key_down_conv = conv2d_no_bias(
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel,
|
||||||
|
down_conv2d_cfg,
|
||||||
|
vb.pp("key.down_conv"),
|
||||||
|
);
|
||||||
|
let key_norm = batch_norm(out_channels, 1e-5, vb.pp("key.norm"));
|
||||||
|
|
||||||
|
let key_proj = conv2d_no_bias(out_channels, kv_dim, 1, proj_conv2d_cfg, vb.pp("key.proj"))?;
|
||||||
|
|
||||||
|
let value_down_conv = conv2d_no_bias(
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel,
|
||||||
|
down_conv2d_cfg,
|
||||||
|
vb.pp("value.down_conv"),
|
||||||
|
);
|
||||||
|
|
||||||
|
let value_norm = batch_norm(out_channels, 1e-5, vb.pp("value.norm"));
|
||||||
|
let value_proj = conv2d_no_bias(
|
||||||
|
out_channels,
|
||||||
|
kv_dim,
|
||||||
|
1,
|
||||||
|
proj_conv2d_cfg,
|
||||||
|
vb.pp("value.proj"),
|
||||||
|
)?;
|
||||||
|
|
||||||
|
let output_proj = conv2d_no_bias(
|
||||||
|
kv_dim * heads,
|
||||||
|
out_channels,
|
||||||
|
1,
|
||||||
|
proj_conv2d_cfg,
|
||||||
|
vb.pp("output.proj"),
|
||||||
|
)?;
|
||||||
|
|
||||||
|
Ok(Func::new(move |xs| {
|
||||||
|
let (_, _, h, w) = xs.dims4()?;
|
||||||
|
|
||||||
|
let residual = xs.clone();
|
||||||
|
|
||||||
|
let xs = xs.apply_t(&norm, false)?;
|
||||||
|
|
||||||
|
// Query
|
||||||
|
let q = xs.apply(&query_proj)?;
|
||||||
|
|
||||||
|
let q = reshape_query(&q, heads, kv_dim)?;
|
||||||
|
let q = (q * scale)?;
|
||||||
|
|
||||||
|
// Keys
|
||||||
|
let mut k = xs.clone();
|
||||||
|
|
||||||
|
if let (Ok(kd), Ok(n)) = (&key_down_conv, &key_norm) {
|
||||||
|
k = k.apply(kd)?.apply_t(n, false)?;
|
||||||
|
}
|
||||||
|
|
||||||
|
let k = k.apply(&key_proj)?;
|
||||||
|
|
||||||
|
let k = reshape_kv(&k)?;
|
||||||
|
|
||||||
|
// Value
|
||||||
|
let mut v = xs.clone();
|
||||||
|
|
||||||
|
if let (Ok(vd), Ok(n)) = (&value_down_conv, &value_norm) {
|
||||||
|
v = v.apply(vd)?;
|
||||||
|
v = v.apply_t(n, false)?;
|
||||||
|
}
|
||||||
|
|
||||||
|
let v = v.apply(&value_proj)?;
|
||||||
|
let v = reshape_kv(&v)?;
|
||||||
|
|
||||||
|
let attn = q.broadcast_matmul(&(k.transpose(D::Minus2, D::Minus1)?))?;
|
||||||
|
let attn = softmax(&attn, D::Minus1)?;
|
||||||
|
let o = attn.broadcast_matmul(&v)?;
|
||||||
|
|
||||||
|
let o = reshape_output(&o, heads, h, w)?;
|
||||||
|
|
||||||
|
let mut xs = o.apply(&output_proj)?;
|
||||||
|
|
||||||
|
// Layer scale
|
||||||
|
|
||||||
|
if let Ok(g) = &gamma {
|
||||||
|
xs = xs.broadcast_mul(&g.reshape((1, (), 1, 1))?)?;
|
||||||
|
};
|
||||||
|
|
||||||
|
if skip_connection {
|
||||||
|
xs = (xs + residual)?;
|
||||||
|
}
|
||||||
|
Ok(xs)
|
||||||
|
}))
|
||||||
|
}
|
||||||
|
|
||||||
|
// Stem.
|
||||||
|
fn mobilenetv4_stem(cfg: &Config, vb: VarBuilder) -> Result<Func<'static>> {
|
||||||
|
let conv2d_cfg = Conv2dConfig {
|
||||||
|
stride: 2,
|
||||||
|
padding: 1,
|
||||||
|
..Default::default()
|
||||||
|
};
|
||||||
|
|
||||||
|
let act = cfg.activation;
|
||||||
|
let out_channels = cfg.stem_dim;
|
||||||
|
let bn = batch_norm(out_channels, 1e-5, vb.pp("bn1"))?;
|
||||||
|
let conv = conv2d_no_bias(3, out_channels, 3, conv2d_cfg, vb.pp("conv_stem"))?;
|
||||||
|
|
||||||
|
Ok(Func::new(move |xs| {
|
||||||
|
let xs = xs.apply(&conv)?.apply_t(&bn, false)?.apply(&act)?;
|
||||||
|
Ok(xs)
|
||||||
|
}))
|
||||||
|
}
|
||||||
|
|
||||||
|
// The blocks in all the 5 stages of the model.
|
||||||
|
fn mobilenetv4_blocks(cfg: &Config, vb: VarBuilder) -> Result<Func<'static>> {
|
||||||
|
let mut in_channels = cfg.stem_dim;
|
||||||
|
let mut blocks = Vec::new();
|
||||||
|
|
||||||
|
for stage in 0..5 {
|
||||||
|
let nblocks = cfg.stages[stage].len();
|
||||||
|
|
||||||
|
for block in 0..nblocks {
|
||||||
|
match cfg.stages[stage][block] {
|
||||||
|
BlockType::Convolutional {
|
||||||
|
out_channels,
|
||||||
|
kernel,
|
||||||
|
stride,
|
||||||
|
} => {
|
||||||
|
blocks.push(conv_block(
|
||||||
|
cfg,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel,
|
||||||
|
stride,
|
||||||
|
vb.pp(format!("{stage}.{block}")),
|
||||||
|
)?);
|
||||||
|
in_channels = out_channels;
|
||||||
|
}
|
||||||
|
|
||||||
|
BlockType::EdgeResidual {
|
||||||
|
out_channels,
|
||||||
|
kernel,
|
||||||
|
stride,
|
||||||
|
expand,
|
||||||
|
} => {
|
||||||
|
blocks.push(edge_residual_block(
|
||||||
|
cfg,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel,
|
||||||
|
stride,
|
||||||
|
expand,
|
||||||
|
vb.pp(format!("{stage}.{block}")),
|
||||||
|
)?);
|
||||||
|
in_channels = out_channels;
|
||||||
|
}
|
||||||
|
|
||||||
|
BlockType::UniversalBottleneck {
|
||||||
|
out_channels,
|
||||||
|
start_kernel,
|
||||||
|
mid_kernel,
|
||||||
|
stride,
|
||||||
|
expand,
|
||||||
|
} => {
|
||||||
|
blocks.push(universal_inverted_bottleneck_block(
|
||||||
|
cfg,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
expand,
|
||||||
|
start_kernel,
|
||||||
|
mid_kernel,
|
||||||
|
stride,
|
||||||
|
vb.pp(format!("{stage}.{block}")),
|
||||||
|
)?);
|
||||||
|
in_channels = out_channels;
|
||||||
|
}
|
||||||
|
|
||||||
|
BlockType::Attention {
|
||||||
|
out_channels,
|
||||||
|
heads,
|
||||||
|
kernel,
|
||||||
|
stride,
|
||||||
|
kv_dim,
|
||||||
|
kv_stride,
|
||||||
|
} => {
|
||||||
|
blocks.push(mqa_block(
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
heads,
|
||||||
|
kernel,
|
||||||
|
stride,
|
||||||
|
kv_dim,
|
||||||
|
kv_stride,
|
||||||
|
vb.pp(format!("{stage}.{block}")),
|
||||||
|
)?);
|
||||||
|
in_channels = out_channels;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(Func::new(move |xs| {
|
||||||
|
let mut xs = xs.clone();
|
||||||
|
for block in blocks.iter() {
|
||||||
|
xs = xs.apply(block)?
|
||||||
|
}
|
||||||
|
Ok(xs)
|
||||||
|
}))
|
||||||
|
}
|
||||||
|
|
||||||
|
// Classification head.
|
||||||
|
fn mobilenetv4_head(
|
||||||
|
cfg: &Config,
|
||||||
|
outputs: usize,
|
||||||
|
nclasses: usize,
|
||||||
|
vb: VarBuilder,
|
||||||
|
) -> Result<Func<'static>> {
|
||||||
|
let conv2d_cfg = Conv2dConfig {
|
||||||
|
..Default::default()
|
||||||
|
};
|
||||||
|
|
||||||
|
let act = cfg.activation;
|
||||||
|
let conv = conv2d_no_bias(960, outputs, 1, conv2d_cfg, vb.pp("conv_head"))?;
|
||||||
|
let norm = batch_norm(outputs, 1e-5, vb.pp("norm_head"))?;
|
||||||
|
let cls = linear(outputs, nclasses, vb.pp("classifier"))?;
|
||||||
|
|
||||||
|
Ok(Func::new(move |xs| {
|
||||||
|
let mut xs = xs.clone();
|
||||||
|
xs = xs.apply(&conv)?;
|
||||||
|
xs = xs.apply_t(&norm, false)?.apply(&act)?;
|
||||||
|
xs = xs.flatten_from(1)?;
|
||||||
|
xs = xs.apply(&cls)?;
|
||||||
|
Ok(xs)
|
||||||
|
}))
|
||||||
|
}
|
||||||
|
|
||||||
|
// Build a mobilenetv4 model for a given configuration.
|
||||||
|
fn mobilenetv4_model(
|
||||||
|
cfg: &Config,
|
||||||
|
nclasses: Option<usize>,
|
||||||
|
vb: VarBuilder,
|
||||||
|
) -> Result<Func<'static>> {
|
||||||
|
let cls = match nclasses {
|
||||||
|
None => None,
|
||||||
|
Some(nclasses) => {
|
||||||
|
let outputs = 1280;
|
||||||
|
let head = mobilenetv4_head(cfg, outputs, nclasses, vb.clone())?;
|
||||||
|
Some(head)
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
let stem = mobilenetv4_stem(cfg, vb.clone())?;
|
||||||
|
|
||||||
|
let blocks = mobilenetv4_blocks(cfg, vb.pp("blocks"))?;
|
||||||
|
|
||||||
|
Ok(Func::new(move |xs| {
|
||||||
|
let xs = xs.apply(&stem)?.apply(&blocks)?;
|
||||||
|
let xs = xs.mean_keepdim(D::Minus1)?.mean_keepdim(D::Minus2)?;
|
||||||
|
match &cls {
|
||||||
|
None => Ok(xs),
|
||||||
|
Some(cls) => xs.apply(cls),
|
||||||
|
}
|
||||||
|
}))
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn mobilenetv4(cfg: &Config, nclasses: usize, vb: VarBuilder) -> Result<Func<'static>> {
|
||||||
|
mobilenetv4_model(cfg, Some(nclasses), vb)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn mobilenetv4_no_final_layer(cfg: &Config, vb: VarBuilder) -> Result<Func<'static>> {
|
||||||
|
mobilenetv4_model(cfg, None, vb)
|
||||||
|
}
|
@ -28,6 +28,7 @@ pub mod metavoice;
|
|||||||
pub mod mistral;
|
pub mod mistral;
|
||||||
pub mod mixformer;
|
pub mod mixformer;
|
||||||
pub mod mixtral;
|
pub mod mixtral;
|
||||||
|
pub mod mobilenetv4;
|
||||||
pub mod mobileone;
|
pub mod mobileone;
|
||||||
pub mod moondream;
|
pub mod moondream;
|
||||||
pub mod mpt;
|
pub mod mpt;
|
||||||
|
Reference in New Issue
Block a user