mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
Merge pull request #20 from LaurentMazare/tensor-display
Add some pretty print display to Tensors
This commit is contained in:
455
candle-core/src/display.rs
Normal file
455
candle-core/src/display.rs
Normal file
@ -0,0 +1,455 @@
|
||||
/// Pretty printing of tensors
|
||||
/// This implementation should be in line with the PyTorch version.
|
||||
/// https://github.com/pytorch/pytorch/blob/7b419e8513a024e172eae767e24ec1b849976b13/torch/_tensor_str.py
|
||||
use crate::{DType, Result, Tensor, WithDType};
|
||||
use half::{bf16, f16};
|
||||
|
||||
impl Tensor {
|
||||
fn fmt_dt<T: WithDType + std::fmt::Display>(
|
||||
&self,
|
||||
f: &mut std::fmt::Formatter,
|
||||
) -> std::fmt::Result {
|
||||
write!(f, "Tensor[")?;
|
||||
match self.dims() {
|
||||
[] => {
|
||||
if let Ok(v) = self.to_scalar::<T>() {
|
||||
write!(f, "{v}")?
|
||||
}
|
||||
}
|
||||
[s] if *s < 10 => {
|
||||
if let Ok(vs) = self.to_vec1::<T>() {
|
||||
for (i, v) in vs.iter().enumerate() {
|
||||
if i > 0 {
|
||||
write!(f, ", ")?;
|
||||
}
|
||||
write!(f, "{v}")?;
|
||||
}
|
||||
}
|
||||
}
|
||||
dims => {
|
||||
write!(f, "dims ")?;
|
||||
for (i, d) in dims.iter().enumerate() {
|
||||
if i > 0 {
|
||||
write!(f, ", ")?;
|
||||
}
|
||||
write!(f, "{d}")?;
|
||||
}
|
||||
}
|
||||
}
|
||||
write!(f, "; {}]", self.dtype().as_str())
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for Tensor {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
||||
match self.dtype() {
|
||||
DType::U32 => self.fmt_dt::<u32>(f),
|
||||
DType::BF16 => self.fmt_dt::<bf16>(f),
|
||||
DType::F16 => self.fmt_dt::<f16>(f),
|
||||
DType::F32 => self.fmt_dt::<f32>(f),
|
||||
DType::F64 => self.fmt_dt::<f64>(f),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
/// Options for Tensor pretty printing
|
||||
pub struct PrinterOptions {
|
||||
precision: usize,
|
||||
threshold: usize,
|
||||
edge_items: usize,
|
||||
line_width: usize,
|
||||
sci_mode: Option<bool>,
|
||||
}
|
||||
|
||||
static PRINT_OPTS: std::sync::Mutex<PrinterOptions> =
|
||||
std::sync::Mutex::new(PrinterOptions::const_default());
|
||||
|
||||
impl PrinterOptions {
|
||||
// We cannot use the default trait as it's not const.
|
||||
const fn const_default() -> Self {
|
||||
Self {
|
||||
precision: 4,
|
||||
threshold: 1000,
|
||||
edge_items: 3,
|
||||
line_width: 80,
|
||||
sci_mode: None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn set_print_options(options: PrinterOptions) {
|
||||
*PRINT_OPTS.lock().unwrap() = options
|
||||
}
|
||||
|
||||
pub fn set_print_options_default() {
|
||||
*PRINT_OPTS.lock().unwrap() = PrinterOptions::const_default()
|
||||
}
|
||||
|
||||
pub fn set_print_options_short() {
|
||||
*PRINT_OPTS.lock().unwrap() = PrinterOptions {
|
||||
precision: 2,
|
||||
threshold: 1000,
|
||||
edge_items: 2,
|
||||
line_width: 80,
|
||||
sci_mode: None,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn set_print_options_full() {
|
||||
*PRINT_OPTS.lock().unwrap() = PrinterOptions {
|
||||
precision: 4,
|
||||
threshold: usize::MAX,
|
||||
edge_items: 3,
|
||||
line_width: 80,
|
||||
sci_mode: None,
|
||||
}
|
||||
}
|
||||
|
||||
struct FmtSize {
|
||||
current_size: usize,
|
||||
}
|
||||
|
||||
impl FmtSize {
|
||||
fn new() -> Self {
|
||||
Self { current_size: 0 }
|
||||
}
|
||||
|
||||
fn final_size(self) -> usize {
|
||||
self.current_size
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Write for FmtSize {
|
||||
fn write_str(&mut self, s: &str) -> std::fmt::Result {
|
||||
self.current_size += s.len();
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
trait TensorFormatter {
|
||||
type Elem: WithDType;
|
||||
|
||||
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result;
|
||||
|
||||
fn max_width(&self, to_display: &Tensor) -> usize {
|
||||
let mut max_width = 1;
|
||||
if let Ok(vs) = to_display.flatten_all().and_then(|t| t.to_vec1()) {
|
||||
for &v in vs.iter() {
|
||||
let mut fmt_size = FmtSize::new();
|
||||
let _res = self.fmt(v, 1, &mut fmt_size);
|
||||
max_width = usize::max(max_width, fmt_size.final_size())
|
||||
}
|
||||
}
|
||||
max_width
|
||||
}
|
||||
|
||||
fn write_newline_indent(i: usize, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
||||
writeln!(f)?;
|
||||
for _ in 0..i {
|
||||
write!(f, " ")?
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn fmt_tensor(
|
||||
&self,
|
||||
t: &Tensor,
|
||||
indent: usize,
|
||||
max_w: usize,
|
||||
summarize: bool,
|
||||
po: &PrinterOptions,
|
||||
f: &mut std::fmt::Formatter,
|
||||
) -> std::fmt::Result {
|
||||
let dims = t.dims();
|
||||
let edge_items = po.edge_items;
|
||||
write!(f, "[")?;
|
||||
match dims {
|
||||
[] => {
|
||||
if let Ok(v) = t.to_scalar::<Self::Elem>() {
|
||||
self.fmt(v, max_w, f)?
|
||||
}
|
||||
}
|
||||
[v] if summarize && *v > 2 * edge_items => {
|
||||
if let Ok(vs) = t
|
||||
.narrow(0, 0, edge_items)
|
||||
.and_then(|t| t.to_vec1::<Self::Elem>())
|
||||
{
|
||||
for v in vs.into_iter() {
|
||||
self.fmt(v, max_w, f)?;
|
||||
write!(f, ", ")?;
|
||||
}
|
||||
}
|
||||
write!(f, "...")?;
|
||||
if let Ok(vs) = t
|
||||
.narrow(0, v - edge_items, edge_items)
|
||||
.and_then(|t| t.to_vec1::<Self::Elem>())
|
||||
{
|
||||
for v in vs.into_iter() {
|
||||
write!(f, ", ")?;
|
||||
self.fmt(v, max_w, f)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
[_] => {
|
||||
let elements_per_line = usize::max(1, po.line_width / (max_w + 2));
|
||||
if let Ok(vs) = t.to_vec1::<Self::Elem>() {
|
||||
for (i, v) in vs.into_iter().enumerate() {
|
||||
if i > 0 {
|
||||
if i % elements_per_line == 0 {
|
||||
write!(f, ",")?;
|
||||
Self::write_newline_indent(indent, f)?
|
||||
} else {
|
||||
write!(f, ", ")?;
|
||||
}
|
||||
}
|
||||
self.fmt(v, max_w, f)?
|
||||
}
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
if summarize && dims[0] > 2 * edge_items {
|
||||
for i in 0..edge_items {
|
||||
match t.get(i) {
|
||||
Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?,
|
||||
Err(e) => write!(f, "{e:?}")?,
|
||||
}
|
||||
write!(f, ",")?;
|
||||
Self::write_newline_indent(indent, f)?
|
||||
}
|
||||
write!(f, "...")?;
|
||||
Self::write_newline_indent(indent, f)?;
|
||||
for i in dims[0] - edge_items..dims[0] {
|
||||
match t.get(i) {
|
||||
Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?,
|
||||
Err(e) => write!(f, "{e:?}")?,
|
||||
}
|
||||
if i + 1 != dims[0] {
|
||||
write!(f, ",")?;
|
||||
Self::write_newline_indent(indent, f)?
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for i in 0..dims[0] {
|
||||
match t.get(i) {
|
||||
Ok(t) => self.fmt_tensor(&t, indent + 1, max_w, summarize, po, f)?,
|
||||
Err(e) => write!(f, "{e:?}")?,
|
||||
}
|
||||
if i + 1 != dims[0] {
|
||||
write!(f, ",")?;
|
||||
Self::write_newline_indent(indent, f)?
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
write!(f, "]")?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
struct FloatFormatter<S: WithDType> {
|
||||
int_mode: bool,
|
||||
sci_mode: bool,
|
||||
precision: usize,
|
||||
_phantom: std::marker::PhantomData<S>,
|
||||
}
|
||||
|
||||
impl<S> FloatFormatter<S>
|
||||
where
|
||||
S: WithDType + num_traits::Float + std::fmt::Display,
|
||||
{
|
||||
fn new(t: &Tensor, po: &PrinterOptions) -> Result<Self> {
|
||||
let mut int_mode = true;
|
||||
let mut sci_mode = false;
|
||||
|
||||
// Rather than containing all values, this should only include
|
||||
// values that end up being displayed according to [threshold].
|
||||
let values = t
|
||||
.flatten_all()?
|
||||
.to_vec1()?
|
||||
.into_iter()
|
||||
.filter(|v: &S| v.is_finite() && !v.is_zero())
|
||||
.collect::<Vec<_>>();
|
||||
if !values.is_empty() {
|
||||
let mut nonzero_finite_min = S::max_value();
|
||||
let mut nonzero_finite_max = S::min_value();
|
||||
for &v in values.iter() {
|
||||
let v = v.abs();
|
||||
if v < nonzero_finite_min {
|
||||
nonzero_finite_min = v
|
||||
}
|
||||
if v > nonzero_finite_max {
|
||||
nonzero_finite_max = v
|
||||
}
|
||||
}
|
||||
|
||||
for &value in values.iter() {
|
||||
if value.ceil() != value {
|
||||
int_mode = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if let Some(v1) = S::from(1000.) {
|
||||
if let Some(v2) = S::from(1e8) {
|
||||
if let Some(v3) = S::from(1e-4) {
|
||||
sci_mode = nonzero_finite_max / nonzero_finite_min > v1
|
||||
|| nonzero_finite_max > v2
|
||||
|| nonzero_finite_min < v3
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
match po.sci_mode {
|
||||
None => {}
|
||||
Some(v) => sci_mode = v,
|
||||
}
|
||||
Ok(Self {
|
||||
int_mode,
|
||||
sci_mode,
|
||||
precision: po.precision,
|
||||
_phantom: std::marker::PhantomData,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<S> TensorFormatter for FloatFormatter<S>
|
||||
where
|
||||
S: WithDType + num_traits::Float + std::fmt::Display + std::fmt::LowerExp,
|
||||
{
|
||||
type Elem = S;
|
||||
|
||||
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result {
|
||||
if self.sci_mode {
|
||||
write!(
|
||||
f,
|
||||
"{v:width$.prec$e}",
|
||||
v = v,
|
||||
width = max_w,
|
||||
prec = self.precision
|
||||
)
|
||||
} else if self.int_mode {
|
||||
if v.is_finite() {
|
||||
write!(f, "{v:width$.0}.", v = v, width = max_w - 1)
|
||||
} else {
|
||||
write!(f, "{v:max_w$.0}")
|
||||
}
|
||||
} else {
|
||||
write!(
|
||||
f,
|
||||
"{v:width$.prec$}",
|
||||
v = v,
|
||||
width = max_w,
|
||||
prec = self.precision
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct IntFormatter<S: WithDType> {
|
||||
_phantom: std::marker::PhantomData<S>,
|
||||
}
|
||||
|
||||
impl<S: WithDType> IntFormatter<S> {
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
_phantom: std::marker::PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<S> TensorFormatter for IntFormatter<S>
|
||||
where
|
||||
S: WithDType + std::fmt::Display,
|
||||
{
|
||||
type Elem = S;
|
||||
|
||||
fn fmt<T: std::fmt::Write>(&self, v: Self::Elem, max_w: usize, f: &mut T) -> std::fmt::Result {
|
||||
write!(f, "{v:max_w$}")
|
||||
}
|
||||
}
|
||||
|
||||
fn get_summarized_data(t: &Tensor, edge_items: usize) -> Result<Tensor> {
|
||||
let dims = t.dims();
|
||||
if dims.is_empty() {
|
||||
Ok(t.clone())
|
||||
} else if dims.len() == 1 {
|
||||
if dims[0] > 2 * edge_items {
|
||||
Tensor::cat(
|
||||
&[
|
||||
t.narrow(0, 0, edge_items)?,
|
||||
t.narrow(0, dims[0] - edge_items, edge_items)?,
|
||||
],
|
||||
0,
|
||||
)
|
||||
} else {
|
||||
Ok(t.clone())
|
||||
}
|
||||
} else if dims[0] > 2 * edge_items {
|
||||
let mut vs: Vec<_> = (0..edge_items)
|
||||
.map(|i| get_summarized_data(&t.get(i)?, edge_items))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
for i in (dims[0] - edge_items)..dims[0] {
|
||||
vs.push(get_summarized_data(&t.get(i)?, edge_items)?)
|
||||
}
|
||||
Tensor::cat(&vs, 0)
|
||||
} else {
|
||||
let vs: Vec<_> = (0..dims[0])
|
||||
.map(|i| get_summarized_data(&t.get(i)?, edge_items))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
Tensor::cat(&vs, 0)
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Display for Tensor {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
||||
let po = PRINT_OPTS.lock().unwrap();
|
||||
let summarize = self.elem_count() > po.threshold;
|
||||
let to_display = if summarize {
|
||||
match get_summarized_data(self, po.edge_items) {
|
||||
Ok(v) => v,
|
||||
Err(err) => return write!(f, "{err:?}"),
|
||||
}
|
||||
} else {
|
||||
self.clone()
|
||||
};
|
||||
match self.dtype() {
|
||||
DType::U32 => {
|
||||
let tf: IntFormatter<u32> = IntFormatter::new();
|
||||
let max_w = tf.max_width(&to_display);
|
||||
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
||||
writeln!(f)?;
|
||||
}
|
||||
DType::BF16 => {
|
||||
if let Ok(tf) = FloatFormatter::<bf16>::new(&to_display, &po) {
|
||||
let max_w = tf.max_width(&to_display);
|
||||
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
||||
writeln!(f)?;
|
||||
}
|
||||
}
|
||||
DType::F16 => {
|
||||
if let Ok(tf) = FloatFormatter::<f16>::new(&to_display, &po) {
|
||||
let max_w = tf.max_width(&to_display);
|
||||
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
||||
writeln!(f)?;
|
||||
}
|
||||
}
|
||||
DType::F64 => {
|
||||
if let Ok(tf) = FloatFormatter::<f64>::new(&to_display, &po) {
|
||||
let max_w = tf.max_width(&to_display);
|
||||
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
||||
writeln!(f)?;
|
||||
}
|
||||
}
|
||||
DType::F32 => {
|
||||
if let Ok(tf) = FloatFormatter::<f32>::new(&to_display, &po) {
|
||||
let max_w = tf.max_width(&to_display);
|
||||
tf.fmt_tensor(self, 1, max_w, summarize, &po, f)?;
|
||||
writeln!(f)?;
|
||||
}
|
||||
}
|
||||
};
|
||||
write!(f, "Tensor[{:?}, {}]", self.dims(), self.dtype().as_str())
|
||||
}
|
||||
}
|
@ -3,6 +3,7 @@ mod cpu_backend;
|
||||
#[cfg(feature = "cuda")]
|
||||
mod cuda_backend;
|
||||
mod device;
|
||||
pub mod display;
|
||||
mod dtype;
|
||||
mod dummy_cuda_backend;
|
||||
mod error;
|
||||
@ -12,7 +13,7 @@ mod shape;
|
||||
mod storage;
|
||||
mod strided_index;
|
||||
mod tensor;
|
||||
mod utils;
|
||||
pub mod utils;
|
||||
|
||||
pub use cpu_backend::CpuStorage;
|
||||
pub use device::{Device, DeviceLocation};
|
||||
|
@ -44,12 +44,6 @@ impl std::ops::Deref for Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for Tensor {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "[{:?}, {:?}]", &self.shape().dims(), self.device())
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! unary_op {
|
||||
($fn_name:ident, $op_name:ident) => {
|
||||
pub fn $fn_name(&self) -> Result<Self> {
|
||||
@ -658,6 +652,9 @@ impl Tensor {
|
||||
}
|
||||
|
||||
pub fn flatten(&self, start_dim: Option<usize>, end_dim: Option<usize>) -> Result<Tensor> {
|
||||
if self.rank() == 0 {
|
||||
self.reshape(1)
|
||||
} else {
|
||||
let start_dim = start_dim.unwrap_or(0);
|
||||
let end_dim = end_dim.unwrap_or_else(|| self.rank() - 1);
|
||||
if start_dim < end_dim {
|
||||
@ -672,6 +669,7 @@ impl Tensor {
|
||||
Ok(self.clone())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn flatten_all(&self) -> Result<Tensor> {
|
||||
self.flatten(None, None)
|
||||
@ -930,6 +928,36 @@ impl Tensor {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn squeeze(&self, index: usize) -> Result<Self> {
|
||||
// The PyTorch semantics are to return the same tensor if the target dimension
|
||||
// does not have a size of 1.
|
||||
let dims = self.dims();
|
||||
if dims[index] == 1 {
|
||||
let mut dims = dims.to_vec();
|
||||
dims.remove(index);
|
||||
self.reshape(dims)
|
||||
} else {
|
||||
Ok(self.clone())
|
||||
}
|
||||
}
|
||||
|
||||
pub fn unsqueeze(&self, index: usize) -> Result<Self> {
|
||||
let mut dims = self.dims().to_vec();
|
||||
dims.insert(index, 1);
|
||||
self.reshape(dims)
|
||||
}
|
||||
|
||||
pub fn stack<A: AsRef<Tensor>>(args: &[A], dim: usize) -> Result<Self> {
|
||||
if args.is_empty() {
|
||||
return Err(Error::OpRequiresAtLeastOneTensor { op: "stack" });
|
||||
}
|
||||
let args = args
|
||||
.iter()
|
||||
.map(|t| t.as_ref().unsqueeze(dim))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
Self::cat(&args, dim)
|
||||
}
|
||||
|
||||
pub fn cat<A: AsRef<Tensor>>(args: &[A], dim: usize) -> Result<Self> {
|
||||
if args.is_empty() {
|
||||
return Err(Error::OpRequiresAtLeastOneTensor { op: "cat" });
|
||||
|
@ -1,6 +1,6 @@
|
||||
use std::str::FromStr;
|
||||
|
||||
pub(crate) fn get_num_threads() -> usize {
|
||||
pub fn get_num_threads() -> usize {
|
||||
// Respond to the same environment variable as rayon.
|
||||
match std::env::var("RAYON_NUM_THREADS")
|
||||
.ok()
|
||||
|
84
candle-core/tests/display_tests.rs
Normal file
84
candle-core/tests/display_tests.rs
Normal file
@ -0,0 +1,84 @@
|
||||
use anyhow::Result;
|
||||
use candle::{DType, Device::Cpu, Tensor};
|
||||
|
||||
#[test]
|
||||
fn display_scalar() -> Result<()> {
|
||||
let t = Tensor::new(1234u32, &Cpu)?;
|
||||
let s = format!("{t}");
|
||||
assert_eq!(&s, "[1234]\nTensor[[], u32]");
|
||||
let t = t.to_dtype(DType::F32)?.neg()?;
|
||||
let s = format!("{}", (&t / 10.0)?);
|
||||
assert_eq!(&s, "[-123.4000]\nTensor[[], f32]");
|
||||
let s = format!("{}", (&t / 1e8)?);
|
||||
assert_eq!(&s, "[-1.2340e-5]\nTensor[[], f32]");
|
||||
let s = format!("{}", (&t * 1e8)?);
|
||||
assert_eq!(&s, "[-1.2340e11]\nTensor[[], f32]");
|
||||
let s = format!("{}", (&t * 0.)?);
|
||||
assert_eq!(&s, "[0.]\nTensor[[], f32]");
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn display_vector() -> Result<()> {
|
||||
let t = Tensor::new::<&[u32; 0]>(&[], &Cpu)?;
|
||||
let s = format!("{t}");
|
||||
assert_eq!(&s, "[]\nTensor[[0], u32]");
|
||||
let t = Tensor::new(&[0.1234567, 1.0, -1.2, 4.1, f64::NAN], &Cpu)?;
|
||||
let s = format!("{t}");
|
||||
assert_eq!(
|
||||
&s,
|
||||
"[ 0.1235, 1.0000, -1.2000, 4.1000, NaN]\nTensor[[5], f64]"
|
||||
);
|
||||
let t = (Tensor::ones(50, DType::F32, &Cpu)? * 42.)?;
|
||||
let s = format!("\n{t}");
|
||||
let expected = r#"
|
||||
[42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42.,
|
||||
42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42.,
|
||||
42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42., 42.,
|
||||
42., 42.]
|
||||
Tensor[[50], f32]"#;
|
||||
assert_eq!(&s, expected);
|
||||
let t = (Tensor::ones(11000, DType::F32, &Cpu)? * 42.)?;
|
||||
let s = format!("{t}");
|
||||
assert_eq!(
|
||||
&s,
|
||||
"[42., 42., 42., ..., 42., 42., 42.]\nTensor[[11000], f32]"
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn display_multi_dim() -> Result<()> {
|
||||
let t = (Tensor::ones((200, 100), DType::F32, &Cpu)? * 42.)?;
|
||||
let s = format!("\n{t}");
|
||||
let expected = r#"
|
||||
[[42., 42., 42., ..., 42., 42., 42.],
|
||||
[42., 42., 42., ..., 42., 42., 42.],
|
||||
[42., 42., 42., ..., 42., 42., 42.],
|
||||
...
|
||||
[42., 42., 42., ..., 42., 42., 42.],
|
||||
[42., 42., 42., ..., 42., 42., 42.],
|
||||
[42., 42., 42., ..., 42., 42., 42.]]
|
||||
Tensor[[200, 100], f32]"#;
|
||||
assert_eq!(&s, expected);
|
||||
let t = t.reshape(&[2, 1, 1, 100, 100])?;
|
||||
let t = format!("\n{t}");
|
||||
let expected = r#"
|
||||
[[[[[42., 42., 42., ..., 42., 42., 42.],
|
||||
[42., 42., 42., ..., 42., 42., 42.],
|
||||
[42., 42., 42., ..., 42., 42., 42.],
|
||||
...
|
||||
[42., 42., 42., ..., 42., 42., 42.],
|
||||
[42., 42., 42., ..., 42., 42., 42.],
|
||||
[42., 42., 42., ..., 42., 42., 42.]]]],
|
||||
[[[[42., 42., 42., ..., 42., 42., 42.],
|
||||
[42., 42., 42., ..., 42., 42., 42.],
|
||||
[42., 42., 42., ..., 42., 42., 42.],
|
||||
...
|
||||
[42., 42., 42., ..., 42., 42., 42.],
|
||||
[42., 42., 42., ..., 42., 42., 42.],
|
||||
[42., 42., 42., ..., 42., 42., 42.]]]]]
|
||||
Tensor[[2, 1, 1, 100, 100], f32]"#;
|
||||
assert_eq!(&t, expected);
|
||||
Ok(())
|
||||
}
|
Reference in New Issue
Block a user