Add a batch dimension on the bert example.

This commit is contained in:
laurent
2023-07-04 06:10:52 +01:00
parent 8e4d298c90
commit a57b314780
4 changed files with 32 additions and 15 deletions

View File

@ -227,14 +227,22 @@ impl Map2 for MatMul {
let rhs_rs = rhs_stride[rank - 2]; let rhs_rs = rhs_stride[rank - 2];
let a_skip: usize = match lhs_stride[..rank - 2] { let a_skip: usize = match lhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[stride] => stride, [stride] => stride,
[] => m * k, [] => m * k,
_ => Err(Error::UnexpectedStriding)?, _ => Err(Error::UnexpectedStriding {
lhs_stride: lhs_stride.to_vec(),
rhs_stride: rhs_stride.to_vec(),
})?,
}; };
let b_skip: usize = match rhs_stride[..rank - 2] { let b_skip: usize = match rhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[stride] => stride, [stride] => stride,
[] => n * k, [] => n * k,
_ => Err(Error::UnexpectedStriding)?, _ => Err(Error::UnexpectedStriding {
lhs_stride: lhs_stride.to_vec(),
rhs_stride: rhs_stride.to_vec(),
})?,
}; };
let c_skip: usize = m * n; let c_skip: usize = m * n;

View File

@ -599,6 +599,7 @@ fn gemm_config<T>(
}; };
let stride_b: usize = match lhs_stride[..lhs_stride.len() - 2] { let stride_b: usize = match lhs_stride[..lhs_stride.len() - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[stride] => stride, [stride] => stride,
[] => m * k, [] => m * k,
_ => Err(CudaError::MatMulNonContiguous { _ => Err(CudaError::MatMulNonContiguous {
@ -608,6 +609,7 @@ fn gemm_config<T>(
})?, })?,
}; };
let stride_a: usize = match rhs_stride[..rhs_stride.len() - 2] { let stride_a: usize = match rhs_stride[..rhs_stride.len() - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[stride] => stride, [stride] => stride,
[] => n * k, [] => n * k,
_ => Err(CudaError::MatMulNonContiguous { _ => Err(CudaError::MatMulNonContiguous {

View File

@ -93,8 +93,11 @@ pub enum Error {
}, },
// TODO this is temporary when we support arbitrary matmul // TODO this is temporary when we support arbitrary matmul
#[error("temporary error where matmul doesn't support arbitrary striding")] #[error("temporary error where matmul doesn't support arbitrary striding {lhs_stride:?} x {rhs_stride:?}")]
UnexpectedStriding, UnexpectedStriding {
lhs_stride: Vec<usize>,
rhs_stride: Vec<usize>,
},
#[error(transparent)] #[error(transparent)]
Cuda(#[from] crate::CudaError), Cuda(#[from] crate::CudaError),

View File

@ -75,6 +75,9 @@ enum HiddenAct {
impl HiddenAct { impl HiddenAct {
fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> { fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> {
match self { match self {
// TODO: The all-MiniLM-L6-v2 model uses "gelu" whereas this is "gelu_new", this explains some
// small numerical difference.
// https://github.com/huggingface/transformers/blob/cd4584e3c809bb9e1392ccd3fe38b40daba5519a/src/transformers/activations.py#L213
Self::Gelu => xs.gelu(), Self::Gelu => xs.gelu(),
Self::Relu => xs.relu(), Self::Relu => xs.relu(),
} }
@ -196,7 +199,9 @@ impl Linear {
} }
fn forward(&self, x: &Tensor) -> Result<Tensor> { fn forward(&self, x: &Tensor) -> Result<Tensor> {
let x = x.matmul(&self.weight.t()?)?; let (bsize, _, _) = x.shape().r3()?;
let w = self.weight.broadcast_left(bsize)?.t()?;
let x = x.matmul(&w)?;
let x = x.broadcast_add(&self.bias)?; let x = x.broadcast_add(&self.bias)?;
Ok(x) Ok(x)
} }
@ -236,12 +241,11 @@ impl LayerNorm {
} }
fn forward(&self, x: &Tensor) -> Result<Tensor> { fn forward(&self, x: &Tensor) -> Result<Tensor> {
let (seq_len, hidden_size) = x.shape().r2()?; let (_bsize, _seq_len, hidden_size) = x.shape().r3()?;
let mean_x = (x.sum(&[1])? / hidden_size as f64)?; let mean_x = (x.sum(&[2])? / hidden_size as f64)?;
let x = x.broadcast_sub(&mean_x)?; let x = x.broadcast_sub(&mean_x)?;
let norm_x = ((&x * &x)?.sum(&[1])? / hidden_size as f64)?; let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?;
let norm_x = norm_x.broadcast_as((seq_len, hidden_size))?; let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
let x_normed = (x / (norm_x + self.eps)?.sqrt()?)?;
let x = x_normed let x = x_normed
.broadcast_mul(&self.weight)? .broadcast_mul(&self.weight)?
.broadcast_add(&self.bias)?; .broadcast_add(&self.bias)?;
@ -301,7 +305,7 @@ impl BertEmbeddings {
} }
fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> { fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> {
let seq_len = input_ids.shape().r1()?; let (_bsize, seq_len) = input_ids.shape().r2()?;
let input_embeddings = self.word_embeddings.forward(input_ids)?; let input_embeddings = self.word_embeddings.forward(input_ids)?;
let token_type_embeddings = self.token_type_embeddings.forward(token_type_ids)?; let token_type_embeddings = self.token_type_embeddings.forward(token_type_ids)?;
let mut embeddings = (&input_embeddings + token_type_embeddings)?; let mut embeddings = (&input_embeddings + token_type_embeddings)?;
@ -309,7 +313,7 @@ impl BertEmbeddings {
// TODO: Proper absolute positions? // TODO: Proper absolute positions?
let position_ids = (0..seq_len as u32).collect::<Vec<_>>(); let position_ids = (0..seq_len as u32).collect::<Vec<_>>();
let position_ids = Tensor::new(&position_ids[..], &input_ids.device())?; let position_ids = Tensor::new(&position_ids[..], &input_ids.device())?;
embeddings = (&embeddings + position_embeddings.forward(&position_ids)?)? embeddings = embeddings.broadcast_add(&position_embeddings.forward(&position_ids)?)?
} }
let embeddings = self.layer_norm.forward(&embeddings)?; let embeddings = self.layer_norm.forward(&embeddings)?;
let embeddings = self.dropout.forward(&embeddings)?; let embeddings = self.dropout.forward(&embeddings)?;
@ -351,7 +355,7 @@ impl BertSelfAttention {
new_x_shape.push(self.num_attention_heads); new_x_shape.push(self.num_attention_heads);
new_x_shape.push(self.attention_head_size); new_x_shape.push(self.attention_head_size);
// Be cautious about the transposition if adding a batch dim! // Be cautious about the transposition if adding a batch dim!
let xs = xs.reshape(new_x_shape.as_slice())?.transpose(0, 1)?; let xs = xs.reshape(new_x_shape.as_slice())?.transpose(1, 2)?;
Ok(xs.contiguous()?) Ok(xs.contiguous()?)
} }
@ -370,7 +374,7 @@ impl BertSelfAttention {
let attention_probs = self.dropout.forward(&attention_probs)?; let attention_probs = self.dropout.forward(&attention_probs)?;
let context_layer = attention_probs.matmul(&value_layer)?; let context_layer = attention_probs.matmul(&value_layer)?;
let context_layer = context_layer.transpose(0, 1)?.contiguous()?; let context_layer = context_layer.transpose(1, 2)?.contiguous()?;
let context_layer = context_layer.flatten(Some(context_layer.rank() - 2), None)?; let context_layer = context_layer.flatten(Some(context_layer.rank() - 2), None)?;
Ok(context_layer) Ok(context_layer)
} }
@ -616,7 +620,7 @@ fn main() -> Result<()> {
.map_err(E::msg)? .map_err(E::msg)?
.get_ids() .get_ids()
.to_vec(); .to_vec();
let token_ids = Tensor::new(&tokens[..], &device)?; let token_ids = Tensor::new(&tokens[..], &device)?.unsqueeze(0)?;
println!("{token_ids}"); println!("{token_ids}");
let token_type_ids = token_ids.zeros_like()?; let token_type_ids = token_ids.zeros_like()?;
let ys = model.forward(&token_ids, &token_type_ids)?; let ys = model.forward(&token_ids, &token_type_ids)?;