Build alibi bias. (#1115)

* Build alibi bias.

* Apply the alibi attention bias.

* Add the replit-code example.
This commit is contained in:
Laurent Mazare
2023-10-17 20:41:37 +01:00
committed by GitHub
parent 872c3f14b0
commit a72b50e2c0
2 changed files with 328 additions and 6 deletions

View File

@ -15,7 +15,9 @@ pub struct Config {
pub(crate) max_seq_len: usize,
pub(crate) vocab_size: usize,
pub(crate) kv_n_heads: usize,
// pub(crate) attn_config: AttnConfig,
pub(crate) attn_prefix_lm: bool,
pub(crate) attn_alibi: bool,
pub(crate) attn_alibi_bias_max: usize,
}
impl Config {
@ -28,8 +30,15 @@ impl Config {
max_seq_len: 4096,
vocab_size: 32768,
kv_n_heads: 8,
attn_prefix_lm: false,
attn_alibi: true,
attn_alibi_bias_max: 8,
}
}
pub fn is_causal(&self) -> bool {
!self.attn_prefix_lm
}
}
#[derive(Debug)]
@ -42,6 +51,7 @@ struct GroupedQueryAttention {
d_model: usize,
n_heads: usize,
kv_n_heads: usize,
attn_bias: Tensor,
span: tracing::Span,
}
@ -52,6 +62,7 @@ impl GroupedQueryAttention {
let head_dim = cfg.d_model / cfg.n_heads;
let softmax_scale = 1f64 / (head_dim as f64).sqrt();
let out_proj = linear(cfg.d_model, cfg.d_model, vb.pp("out_proj"))?;
let attn_bias = build_alibi_bias(cfg)?.to_device(vb.device())?;
Ok(Self {
wqkv,
out_proj,
@ -61,6 +72,7 @@ impl GroupedQueryAttention {
d_model: cfg.d_model,
n_heads: cfg.n_heads,
kv_n_heads: cfg.kv_n_heads,
attn_bias,
span: tracing::span!(tracing::Level::TRACE, "gqa"),
})
}
@ -94,7 +106,23 @@ impl GroupedQueryAttention {
let key = repeat_kv(key, self.n_heads / self.kv_n_heads)?;
let value = repeat_kv(value, self.n_heads / self.kv_n_heads)?;
let attn_weights = (query.matmul(&key)? * self.softmax_scale)?;
// TODO: attn_bias, alibi
let attn_bias = {
let s_q = query.dim(D::Minus2)?;
let s_k = key.dim(D::Minus1)?;
let (_, _, a_q, a_k) = self.attn_bias.dims4()?;
self.attn_bias
.narrow(2, a_q - s_q, s_q)?
.narrow(3, a_k - s_k, s_k)?
};
let attn_weights = (attn_weights + attn_bias)?;
let attn_weights = match mask {
None => attn_weights,
Some(mask) => masked_fill(
&attn_weights,
&mask.broadcast_left(b_size * self.n_heads)?,
f32::NEG_INFINITY,
)?,
};
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
let attn_output = attn_weights
.matmul(&value)?
@ -172,15 +200,49 @@ impl MPTBlock {
}
}
fn build_alibi_bias(cfg: &Config) -> Result<Tensor> {
let full = !cfg.is_causal();
let seq_len = cfg.max_seq_len;
let alibi_bias = Tensor::arange(1 - seq_len as i64, 1, &Device::Cpu)?;
let alibi_bias = if full {
let a1 = alibi_bias.reshape((1, 1, 1, seq_len))?;
let a2 = alibi_bias.reshape((1, 1, seq_len, 1))?;
a1.broadcast_sub(&a2)?.abs()?.neg()?
} else {
alibi_bias.reshape((1, 1, 1, seq_len))?
};
let mut n_heads2 = 1;
while 2 * n_heads2 <= cfg.n_heads {
n_heads2 *= 2
}
let slopes = (1..=n_heads2)
.map(|v| 1f32 / 2f32.powf((v * cfg.attn_alibi_bias_max) as f32 / n_heads2 as f32))
.collect::<Vec<_>>();
let slopes = if n_heads2 == cfg.n_heads {
slopes
} else {
slopes
.iter()
.skip(1)
.step_by(2)
.chain(slopes.iter().step_by(2))
.take(cfg.n_heads)
.cloned()
.collect::<Vec<f32>>()
};
let slopes = Tensor::new(slopes, &Device::Cpu)?;
alibi_bias.broadcast_mul(&slopes)
}
#[derive(Debug)]
struct Model {
pub struct Model {
wte: candle_nn::Embedding,
blocks: Vec<MPTBlock>,
norm_f: LayerNorm,
}
impl Model {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let wte = candle_nn::embedding(cfg.vocab_size, cfg.d_model, vb.pp("wte"))?;
let vb_b = vb.pp("blocks");
let mut blocks = Vec::with_capacity(cfg.n_layers);
@ -196,7 +258,33 @@ impl Model {
})
}
fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
todo!()
pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
let (_b_size, seq_len) = xs.dims2()?;
let mut xs = xs.apply(&self.wte)?;
let mask = if seq_len <= 1 {
None
} else {
Some(get_mask(seq_len, xs.device())?)
};
for block in self.blocks.iter_mut() {
xs = block.forward(&xs, mask.as_ref())?
}
xs.narrow(1, seq_len - 1, 1)?
.matmul(&self.wte.embeddings().t()?)?
.squeeze(1)
}
}
fn get_mask(size: usize, device: &Device) -> Result<Tensor> {
let mask: Vec<_> = (0..size)
.flat_map(|i| (0..size).map(move |j| u8::from(j > i)))
.collect();
Tensor::from_slice(&mask, (size, size), device)
}
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
let shape = mask.shape();
let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
let m = mask.where_cond(&on_true, on_false)?;
Ok(m)
}