mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 18:28:24 +00:00
Build alibi bias. (#1115)
* Build alibi bias. * Apply the alibi attention bias. * Add the replit-code example.
This commit is contained in:
234
candle-examples/examples/replit-code/main.rs
Normal file
234
candle-examples/examples/replit-code/main.rs
Normal file
@ -0,0 +1,234 @@
|
|||||||
|
#[cfg(feature = "mkl")]
|
||||||
|
extern crate intel_mkl_src;
|
||||||
|
|
||||||
|
#[cfg(feature = "accelerate")]
|
||||||
|
extern crate accelerate_src;
|
||||||
|
|
||||||
|
use anyhow::{Error as E, Result};
|
||||||
|
use clap::Parser;
|
||||||
|
|
||||||
|
use candle_transformers::models::mpt::{Config, Model};
|
||||||
|
|
||||||
|
use candle::{DType, Device, Tensor};
|
||||||
|
use candle_nn::VarBuilder;
|
||||||
|
use candle_transformers::generation::LogitsProcessor;
|
||||||
|
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||||
|
use tokenizers::Tokenizer;
|
||||||
|
|
||||||
|
struct TextGeneration {
|
||||||
|
model: Model,
|
||||||
|
device: Device,
|
||||||
|
tokenizer: Tokenizer,
|
||||||
|
logits_processor: LogitsProcessor,
|
||||||
|
repeat_penalty: f32,
|
||||||
|
repeat_last_n: usize,
|
||||||
|
verbose_prompt: bool,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl TextGeneration {
|
||||||
|
#[allow(clippy::too_many_arguments)]
|
||||||
|
fn new(
|
||||||
|
model: Model,
|
||||||
|
tokenizer: Tokenizer,
|
||||||
|
seed: u64,
|
||||||
|
temp: Option<f64>,
|
||||||
|
top_p: Option<f64>,
|
||||||
|
repeat_penalty: f32,
|
||||||
|
repeat_last_n: usize,
|
||||||
|
verbose_prompt: bool,
|
||||||
|
device: &Device,
|
||||||
|
) -> Self {
|
||||||
|
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||||
|
Self {
|
||||||
|
model,
|
||||||
|
tokenizer,
|
||||||
|
logits_processor,
|
||||||
|
repeat_penalty,
|
||||||
|
repeat_last_n,
|
||||||
|
verbose_prompt,
|
||||||
|
device: device.clone(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||||
|
use std::io::Write;
|
||||||
|
println!("starting the inference loop");
|
||||||
|
let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?;
|
||||||
|
if tokens.is_empty() {
|
||||||
|
anyhow::bail!("Empty prompts are not supported in the phi model.")
|
||||||
|
}
|
||||||
|
if self.verbose_prompt {
|
||||||
|
for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
|
||||||
|
let token = token.replace('▁', " ").replace("<0x0A>", "\n");
|
||||||
|
println!("{id:7} -> '{token}'");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
let mut tokens = tokens.get_ids().to_vec();
|
||||||
|
let mut generated_tokens = 0usize;
|
||||||
|
let eos_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") {
|
||||||
|
Some(token) => *token,
|
||||||
|
None => anyhow::bail!("cannot find the endoftext token"),
|
||||||
|
};
|
||||||
|
print!("{prompt}");
|
||||||
|
std::io::stdout().flush()?;
|
||||||
|
let start_gen = std::time::Instant::now();
|
||||||
|
for index in 0..sample_len {
|
||||||
|
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||||
|
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||||
|
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||||
|
let logits = self.model.forward(&input)?;
|
||||||
|
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
|
||||||
|
let logits = if self.repeat_penalty == 1. {
|
||||||
|
logits
|
||||||
|
} else {
|
||||||
|
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||||
|
candle_transformers::utils::apply_repeat_penalty(
|
||||||
|
&logits,
|
||||||
|
self.repeat_penalty,
|
||||||
|
&tokens[start_at..],
|
||||||
|
)?
|
||||||
|
};
|
||||||
|
|
||||||
|
let next_token = self.logits_processor.sample(&logits)?;
|
||||||
|
tokens.push(next_token);
|
||||||
|
generated_tokens += 1;
|
||||||
|
if next_token == eos_token {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
|
||||||
|
print!("{token}");
|
||||||
|
std::io::stdout().flush()?;
|
||||||
|
}
|
||||||
|
let dt = start_gen.elapsed();
|
||||||
|
println!(
|
||||||
|
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||||
|
generated_tokens as f64 / dt.as_secs_f64(),
|
||||||
|
);
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Parser, Debug)]
|
||||||
|
#[command(author, version, about, long_about = None)]
|
||||||
|
struct Args {
|
||||||
|
/// Run on CPU rather than on GPU.
|
||||||
|
#[arg(long)]
|
||||||
|
cpu: bool,
|
||||||
|
|
||||||
|
/// Enable tracing (generates a trace-timestamp.json file).
|
||||||
|
#[arg(long)]
|
||||||
|
tracing: bool,
|
||||||
|
|
||||||
|
/// Display the token for the specified prompt.
|
||||||
|
#[arg(long)]
|
||||||
|
verbose_prompt: bool,
|
||||||
|
|
||||||
|
#[arg(long)]
|
||||||
|
prompt: String,
|
||||||
|
|
||||||
|
/// The temperature used to generate samples.
|
||||||
|
#[arg(long)]
|
||||||
|
temperature: Option<f64>,
|
||||||
|
|
||||||
|
/// Nucleus sampling probability cutoff.
|
||||||
|
#[arg(long)]
|
||||||
|
top_p: Option<f64>,
|
||||||
|
|
||||||
|
/// The seed to use when generating random samples.
|
||||||
|
#[arg(long, default_value_t = 299792458)]
|
||||||
|
seed: u64,
|
||||||
|
|
||||||
|
/// The length of the sample to generate (in tokens).
|
||||||
|
#[arg(long, short = 'n', default_value_t = 100)]
|
||||||
|
sample_len: usize,
|
||||||
|
|
||||||
|
#[arg(long)]
|
||||||
|
model_id: Option<String>,
|
||||||
|
|
||||||
|
#[arg(long)]
|
||||||
|
revision: Option<String>,
|
||||||
|
|
||||||
|
#[arg(long)]
|
||||||
|
weight_file: Option<String>,
|
||||||
|
|
||||||
|
#[arg(long)]
|
||||||
|
tokenizer: Option<String>,
|
||||||
|
|
||||||
|
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||||
|
#[arg(long, default_value_t = 1.1)]
|
||||||
|
repeat_penalty: f32,
|
||||||
|
|
||||||
|
/// The context size to consider for the repeat penalty.
|
||||||
|
#[arg(long, default_value_t = 64)]
|
||||||
|
repeat_last_n: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
fn main() -> Result<()> {
|
||||||
|
use tracing_chrome::ChromeLayerBuilder;
|
||||||
|
use tracing_subscriber::prelude::*;
|
||||||
|
|
||||||
|
let args = Args::parse();
|
||||||
|
let _guard = if args.tracing {
|
||||||
|
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||||
|
tracing_subscriber::registry().with(chrome_layer).init();
|
||||||
|
Some(guard)
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
};
|
||||||
|
println!(
|
||||||
|
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||||
|
candle::utils::with_avx(),
|
||||||
|
candle::utils::with_neon(),
|
||||||
|
candle::utils::with_simd128(),
|
||||||
|
candle::utils::with_f16c()
|
||||||
|
);
|
||||||
|
println!(
|
||||||
|
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||||
|
args.temperature.unwrap_or(0.),
|
||||||
|
args.repeat_penalty,
|
||||||
|
args.repeat_last_n
|
||||||
|
);
|
||||||
|
|
||||||
|
let start = std::time::Instant::now();
|
||||||
|
let api = Api::new()?;
|
||||||
|
let model_id = match args.model_id {
|
||||||
|
Some(model_id) => model_id.to_string(),
|
||||||
|
None => "lmz/candle-replit-code".to_string(),
|
||||||
|
};
|
||||||
|
let revision = match args.revision {
|
||||||
|
Some(rev) => rev.to_string(),
|
||||||
|
None => "main".to_string(),
|
||||||
|
};
|
||||||
|
let repo = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
|
||||||
|
let tokenizer_filename = match args.tokenizer {
|
||||||
|
Some(file) => std::path::PathBuf::from(file),
|
||||||
|
None => repo.get("tokenizer.json")?,
|
||||||
|
};
|
||||||
|
let filename = match args.weight_file {
|
||||||
|
Some(weight_file) => std::path::PathBuf::from(weight_file),
|
||||||
|
None => repo.get("model.safetensors")?,
|
||||||
|
};
|
||||||
|
println!("retrieved the files in {:?}", start.elapsed());
|
||||||
|
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||||
|
|
||||||
|
let start = std::time::Instant::now();
|
||||||
|
let config = Config::replit_code_v1_5_3b();
|
||||||
|
let device = candle_examples::device(args.cpu)?;
|
||||||
|
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[filename], DType::F32, &device)? };
|
||||||
|
let model = Model::new(&config, vb)?;
|
||||||
|
println!("loaded the model in {:?}", start.elapsed());
|
||||||
|
|
||||||
|
let mut pipeline = TextGeneration::new(
|
||||||
|
model,
|
||||||
|
tokenizer,
|
||||||
|
args.seed,
|
||||||
|
args.temperature,
|
||||||
|
args.top_p,
|
||||||
|
args.repeat_penalty,
|
||||||
|
args.repeat_last_n,
|
||||||
|
args.verbose_prompt,
|
||||||
|
&device,
|
||||||
|
);
|
||||||
|
pipeline.run(&args.prompt, args.sample_len)?;
|
||||||
|
Ok(())
|
||||||
|
}
|
@ -15,7 +15,9 @@ pub struct Config {
|
|||||||
pub(crate) max_seq_len: usize,
|
pub(crate) max_seq_len: usize,
|
||||||
pub(crate) vocab_size: usize,
|
pub(crate) vocab_size: usize,
|
||||||
pub(crate) kv_n_heads: usize,
|
pub(crate) kv_n_heads: usize,
|
||||||
// pub(crate) attn_config: AttnConfig,
|
pub(crate) attn_prefix_lm: bool,
|
||||||
|
pub(crate) attn_alibi: bool,
|
||||||
|
pub(crate) attn_alibi_bias_max: usize,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Config {
|
impl Config {
|
||||||
@ -28,8 +30,15 @@ impl Config {
|
|||||||
max_seq_len: 4096,
|
max_seq_len: 4096,
|
||||||
vocab_size: 32768,
|
vocab_size: 32768,
|
||||||
kv_n_heads: 8,
|
kv_n_heads: 8,
|
||||||
|
attn_prefix_lm: false,
|
||||||
|
attn_alibi: true,
|
||||||
|
attn_alibi_bias_max: 8,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub fn is_causal(&self) -> bool {
|
||||||
|
!self.attn_prefix_lm
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Debug)]
|
#[derive(Debug)]
|
||||||
@ -42,6 +51,7 @@ struct GroupedQueryAttention {
|
|||||||
d_model: usize,
|
d_model: usize,
|
||||||
n_heads: usize,
|
n_heads: usize,
|
||||||
kv_n_heads: usize,
|
kv_n_heads: usize,
|
||||||
|
attn_bias: Tensor,
|
||||||
span: tracing::Span,
|
span: tracing::Span,
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -52,6 +62,7 @@ impl GroupedQueryAttention {
|
|||||||
let head_dim = cfg.d_model / cfg.n_heads;
|
let head_dim = cfg.d_model / cfg.n_heads;
|
||||||
let softmax_scale = 1f64 / (head_dim as f64).sqrt();
|
let softmax_scale = 1f64 / (head_dim as f64).sqrt();
|
||||||
let out_proj = linear(cfg.d_model, cfg.d_model, vb.pp("out_proj"))?;
|
let out_proj = linear(cfg.d_model, cfg.d_model, vb.pp("out_proj"))?;
|
||||||
|
let attn_bias = build_alibi_bias(cfg)?.to_device(vb.device())?;
|
||||||
Ok(Self {
|
Ok(Self {
|
||||||
wqkv,
|
wqkv,
|
||||||
out_proj,
|
out_proj,
|
||||||
@ -61,6 +72,7 @@ impl GroupedQueryAttention {
|
|||||||
d_model: cfg.d_model,
|
d_model: cfg.d_model,
|
||||||
n_heads: cfg.n_heads,
|
n_heads: cfg.n_heads,
|
||||||
kv_n_heads: cfg.kv_n_heads,
|
kv_n_heads: cfg.kv_n_heads,
|
||||||
|
attn_bias,
|
||||||
span: tracing::span!(tracing::Level::TRACE, "gqa"),
|
span: tracing::span!(tracing::Level::TRACE, "gqa"),
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
@ -94,7 +106,23 @@ impl GroupedQueryAttention {
|
|||||||
let key = repeat_kv(key, self.n_heads / self.kv_n_heads)?;
|
let key = repeat_kv(key, self.n_heads / self.kv_n_heads)?;
|
||||||
let value = repeat_kv(value, self.n_heads / self.kv_n_heads)?;
|
let value = repeat_kv(value, self.n_heads / self.kv_n_heads)?;
|
||||||
let attn_weights = (query.matmul(&key)? * self.softmax_scale)?;
|
let attn_weights = (query.matmul(&key)? * self.softmax_scale)?;
|
||||||
// TODO: attn_bias, alibi
|
let attn_bias = {
|
||||||
|
let s_q = query.dim(D::Minus2)?;
|
||||||
|
let s_k = key.dim(D::Minus1)?;
|
||||||
|
let (_, _, a_q, a_k) = self.attn_bias.dims4()?;
|
||||||
|
self.attn_bias
|
||||||
|
.narrow(2, a_q - s_q, s_q)?
|
||||||
|
.narrow(3, a_k - s_k, s_k)?
|
||||||
|
};
|
||||||
|
let attn_weights = (attn_weights + attn_bias)?;
|
||||||
|
let attn_weights = match mask {
|
||||||
|
None => attn_weights,
|
||||||
|
Some(mask) => masked_fill(
|
||||||
|
&attn_weights,
|
||||||
|
&mask.broadcast_left(b_size * self.n_heads)?,
|
||||||
|
f32::NEG_INFINITY,
|
||||||
|
)?,
|
||||||
|
};
|
||||||
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
|
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
|
||||||
let attn_output = attn_weights
|
let attn_output = attn_weights
|
||||||
.matmul(&value)?
|
.matmul(&value)?
|
||||||
@ -172,15 +200,49 @@ impl MPTBlock {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn build_alibi_bias(cfg: &Config) -> Result<Tensor> {
|
||||||
|
let full = !cfg.is_causal();
|
||||||
|
let seq_len = cfg.max_seq_len;
|
||||||
|
let alibi_bias = Tensor::arange(1 - seq_len as i64, 1, &Device::Cpu)?;
|
||||||
|
let alibi_bias = if full {
|
||||||
|
let a1 = alibi_bias.reshape((1, 1, 1, seq_len))?;
|
||||||
|
let a2 = alibi_bias.reshape((1, 1, seq_len, 1))?;
|
||||||
|
a1.broadcast_sub(&a2)?.abs()?.neg()?
|
||||||
|
} else {
|
||||||
|
alibi_bias.reshape((1, 1, 1, seq_len))?
|
||||||
|
};
|
||||||
|
let mut n_heads2 = 1;
|
||||||
|
while 2 * n_heads2 <= cfg.n_heads {
|
||||||
|
n_heads2 *= 2
|
||||||
|
}
|
||||||
|
let slopes = (1..=n_heads2)
|
||||||
|
.map(|v| 1f32 / 2f32.powf((v * cfg.attn_alibi_bias_max) as f32 / n_heads2 as f32))
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
let slopes = if n_heads2 == cfg.n_heads {
|
||||||
|
slopes
|
||||||
|
} else {
|
||||||
|
slopes
|
||||||
|
.iter()
|
||||||
|
.skip(1)
|
||||||
|
.step_by(2)
|
||||||
|
.chain(slopes.iter().step_by(2))
|
||||||
|
.take(cfg.n_heads)
|
||||||
|
.cloned()
|
||||||
|
.collect::<Vec<f32>>()
|
||||||
|
};
|
||||||
|
let slopes = Tensor::new(slopes, &Device::Cpu)?;
|
||||||
|
alibi_bias.broadcast_mul(&slopes)
|
||||||
|
}
|
||||||
|
|
||||||
#[derive(Debug)]
|
#[derive(Debug)]
|
||||||
struct Model {
|
pub struct Model {
|
||||||
wte: candle_nn::Embedding,
|
wte: candle_nn::Embedding,
|
||||||
blocks: Vec<MPTBlock>,
|
blocks: Vec<MPTBlock>,
|
||||||
norm_f: LayerNorm,
|
norm_f: LayerNorm,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Model {
|
impl Model {
|
||||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||||
let wte = candle_nn::embedding(cfg.vocab_size, cfg.d_model, vb.pp("wte"))?;
|
let wte = candle_nn::embedding(cfg.vocab_size, cfg.d_model, vb.pp("wte"))?;
|
||||||
let vb_b = vb.pp("blocks");
|
let vb_b = vb.pp("blocks");
|
||||||
let mut blocks = Vec::with_capacity(cfg.n_layers);
|
let mut blocks = Vec::with_capacity(cfg.n_layers);
|
||||||
@ -196,7 +258,33 @@ impl Model {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
|
pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
|
||||||
todo!()
|
let (_b_size, seq_len) = xs.dims2()?;
|
||||||
|
let mut xs = xs.apply(&self.wte)?;
|
||||||
|
let mask = if seq_len <= 1 {
|
||||||
|
None
|
||||||
|
} else {
|
||||||
|
Some(get_mask(seq_len, xs.device())?)
|
||||||
|
};
|
||||||
|
for block in self.blocks.iter_mut() {
|
||||||
|
xs = block.forward(&xs, mask.as_ref())?
|
||||||
|
}
|
||||||
|
xs.narrow(1, seq_len - 1, 1)?
|
||||||
|
.matmul(&self.wte.embeddings().t()?)?
|
||||||
|
.squeeze(1)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn get_mask(size: usize, device: &Device) -> Result<Tensor> {
|
||||||
|
let mask: Vec<_> = (0..size)
|
||||||
|
.flat_map(|i| (0..size).map(move |j| u8::from(j > i)))
|
||||||
|
.collect();
|
||||||
|
Tensor::from_slice(&mask, (size, size), device)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
|
||||||
|
let shape = mask.shape();
|
||||||
|
let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
|
||||||
|
let m = mask.where_cond(&on_true, on_false)?;
|
||||||
|
Ok(m)
|
||||||
|
}
|
||||||
|
Reference in New Issue
Block a user