Build alibi bias. (#1115)

* Build alibi bias.

* Apply the alibi attention bias.

* Add the replit-code example.
This commit is contained in:
Laurent Mazare
2023-10-17 20:41:37 +01:00
committed by GitHub
parent 872c3f14b0
commit a72b50e2c0
2 changed files with 328 additions and 6 deletions

View File

@ -0,0 +1,234 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::{Error as E, Result};
use clap::Parser;
use candle_transformers::models::mpt::{Config, Model};
use candle::{DType, Device, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;
struct TextGeneration {
model: Model,
device: Device,
tokenizer: Tokenizer,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
verbose_prompt: bool,
}
impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(
model: Model,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
repeat_penalty: f32,
repeat_last_n: usize,
verbose_prompt: bool,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
tokenizer,
logits_processor,
repeat_penalty,
repeat_last_n,
verbose_prompt,
device: device.clone(),
}
}
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
println!("starting the inference loop");
let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?;
if tokens.is_empty() {
anyhow::bail!("Empty prompts are not supported in the phi model.")
}
if self.verbose_prompt {
for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
let token = token.replace('▁', " ").replace("<0x0A>", "\n");
println!("{id:7} -> '{token}'");
}
}
let mut tokens = tokens.get_ids().to_vec();
let mut generated_tokens = 0usize;
let eos_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") {
Some(token) => *token,
None => anyhow::bail!("cannot find the endoftext token"),
};
print!("{prompt}");
std::io::stdout().flush()?;
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = self.model.forward(&input)?;
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token {
break;
}
let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
print!("{token}");
std::io::stdout().flush()?;
}
let dt = start_gen.elapsed();
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64(),
);
Ok(())
}
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
/// Display the token for the specified prompt.
#[arg(long)]
verbose_prompt: bool,
#[arg(long)]
prompt: String,
/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 100)]
sample_len: usize,
#[arg(long)]
model_id: Option<String>,
#[arg(long)]
revision: Option<String>,
#[arg(long)]
weight_file: Option<String>,
#[arg(long)]
tokenizer: Option<String>,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
}
fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature.unwrap_or(0.),
args.repeat_penalty,
args.repeat_last_n
);
let start = std::time::Instant::now();
let api = Api::new()?;
let model_id = match args.model_id {
Some(model_id) => model_id.to_string(),
None => "lmz/candle-replit-code".to_string(),
};
let revision = match args.revision {
Some(rev) => rev.to_string(),
None => "main".to_string(),
};
let repo = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
let tokenizer_filename = match args.tokenizer {
Some(file) => std::path::PathBuf::from(file),
None => repo.get("tokenizer.json")?,
};
let filename = match args.weight_file {
Some(weight_file) => std::path::PathBuf::from(weight_file),
None => repo.get("model.safetensors")?,
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
let config = Config::replit_code_v1_5_3b();
let device = candle_examples::device(args.cpu)?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[filename], DType::F32, &device)? };
let model = Model::new(&config, vb)?;
println!("loaded the model in {:?}", start.elapsed());
let mut pipeline = TextGeneration::new(
model,
tokenizer,
args.seed,
args.temperature,
args.top_p,
args.repeat_penalty,
args.repeat_last_n,
args.verbose_prompt,
&device,
);
pipeline.run(&args.prompt, args.sample_len)?;
Ok(())
}

View File

@ -15,7 +15,9 @@ pub struct Config {
pub(crate) max_seq_len: usize, pub(crate) max_seq_len: usize,
pub(crate) vocab_size: usize, pub(crate) vocab_size: usize,
pub(crate) kv_n_heads: usize, pub(crate) kv_n_heads: usize,
// pub(crate) attn_config: AttnConfig, pub(crate) attn_prefix_lm: bool,
pub(crate) attn_alibi: bool,
pub(crate) attn_alibi_bias_max: usize,
} }
impl Config { impl Config {
@ -28,8 +30,15 @@ impl Config {
max_seq_len: 4096, max_seq_len: 4096,
vocab_size: 32768, vocab_size: 32768,
kv_n_heads: 8, kv_n_heads: 8,
attn_prefix_lm: false,
attn_alibi: true,
attn_alibi_bias_max: 8,
} }
} }
pub fn is_causal(&self) -> bool {
!self.attn_prefix_lm
}
} }
#[derive(Debug)] #[derive(Debug)]
@ -42,6 +51,7 @@ struct GroupedQueryAttention {
d_model: usize, d_model: usize,
n_heads: usize, n_heads: usize,
kv_n_heads: usize, kv_n_heads: usize,
attn_bias: Tensor,
span: tracing::Span, span: tracing::Span,
} }
@ -52,6 +62,7 @@ impl GroupedQueryAttention {
let head_dim = cfg.d_model / cfg.n_heads; let head_dim = cfg.d_model / cfg.n_heads;
let softmax_scale = 1f64 / (head_dim as f64).sqrt(); let softmax_scale = 1f64 / (head_dim as f64).sqrt();
let out_proj = linear(cfg.d_model, cfg.d_model, vb.pp("out_proj"))?; let out_proj = linear(cfg.d_model, cfg.d_model, vb.pp("out_proj"))?;
let attn_bias = build_alibi_bias(cfg)?.to_device(vb.device())?;
Ok(Self { Ok(Self {
wqkv, wqkv,
out_proj, out_proj,
@ -61,6 +72,7 @@ impl GroupedQueryAttention {
d_model: cfg.d_model, d_model: cfg.d_model,
n_heads: cfg.n_heads, n_heads: cfg.n_heads,
kv_n_heads: cfg.kv_n_heads, kv_n_heads: cfg.kv_n_heads,
attn_bias,
span: tracing::span!(tracing::Level::TRACE, "gqa"), span: tracing::span!(tracing::Level::TRACE, "gqa"),
}) })
} }
@ -94,7 +106,23 @@ impl GroupedQueryAttention {
let key = repeat_kv(key, self.n_heads / self.kv_n_heads)?; let key = repeat_kv(key, self.n_heads / self.kv_n_heads)?;
let value = repeat_kv(value, self.n_heads / self.kv_n_heads)?; let value = repeat_kv(value, self.n_heads / self.kv_n_heads)?;
let attn_weights = (query.matmul(&key)? * self.softmax_scale)?; let attn_weights = (query.matmul(&key)? * self.softmax_scale)?;
// TODO: attn_bias, alibi let attn_bias = {
let s_q = query.dim(D::Minus2)?;
let s_k = key.dim(D::Minus1)?;
let (_, _, a_q, a_k) = self.attn_bias.dims4()?;
self.attn_bias
.narrow(2, a_q - s_q, s_q)?
.narrow(3, a_k - s_k, s_k)?
};
let attn_weights = (attn_weights + attn_bias)?;
let attn_weights = match mask {
None => attn_weights,
Some(mask) => masked_fill(
&attn_weights,
&mask.broadcast_left(b_size * self.n_heads)?,
f32::NEG_INFINITY,
)?,
};
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?; let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
let attn_output = attn_weights let attn_output = attn_weights
.matmul(&value)? .matmul(&value)?
@ -172,15 +200,49 @@ impl MPTBlock {
} }
} }
fn build_alibi_bias(cfg: &Config) -> Result<Tensor> {
let full = !cfg.is_causal();
let seq_len = cfg.max_seq_len;
let alibi_bias = Tensor::arange(1 - seq_len as i64, 1, &Device::Cpu)?;
let alibi_bias = if full {
let a1 = alibi_bias.reshape((1, 1, 1, seq_len))?;
let a2 = alibi_bias.reshape((1, 1, seq_len, 1))?;
a1.broadcast_sub(&a2)?.abs()?.neg()?
} else {
alibi_bias.reshape((1, 1, 1, seq_len))?
};
let mut n_heads2 = 1;
while 2 * n_heads2 <= cfg.n_heads {
n_heads2 *= 2
}
let slopes = (1..=n_heads2)
.map(|v| 1f32 / 2f32.powf((v * cfg.attn_alibi_bias_max) as f32 / n_heads2 as f32))
.collect::<Vec<_>>();
let slopes = if n_heads2 == cfg.n_heads {
slopes
} else {
slopes
.iter()
.skip(1)
.step_by(2)
.chain(slopes.iter().step_by(2))
.take(cfg.n_heads)
.cloned()
.collect::<Vec<f32>>()
};
let slopes = Tensor::new(slopes, &Device::Cpu)?;
alibi_bias.broadcast_mul(&slopes)
}
#[derive(Debug)] #[derive(Debug)]
struct Model { pub struct Model {
wte: candle_nn::Embedding, wte: candle_nn::Embedding,
blocks: Vec<MPTBlock>, blocks: Vec<MPTBlock>,
norm_f: LayerNorm, norm_f: LayerNorm,
} }
impl Model { impl Model {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let wte = candle_nn::embedding(cfg.vocab_size, cfg.d_model, vb.pp("wte"))?; let wte = candle_nn::embedding(cfg.vocab_size, cfg.d_model, vb.pp("wte"))?;
let vb_b = vb.pp("blocks"); let vb_b = vb.pp("blocks");
let mut blocks = Vec::with_capacity(cfg.n_layers); let mut blocks = Vec::with_capacity(cfg.n_layers);
@ -196,7 +258,33 @@ impl Model {
}) })
} }
fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> { pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
todo!() let (_b_size, seq_len) = xs.dims2()?;
let mut xs = xs.apply(&self.wte)?;
let mask = if seq_len <= 1 {
None
} else {
Some(get_mask(seq_len, xs.device())?)
};
for block in self.blocks.iter_mut() {
xs = block.forward(&xs, mask.as_ref())?
}
xs.narrow(1, seq_len - 1, 1)?
.matmul(&self.wte.embeddings().t()?)?
.squeeze(1)
} }
} }
fn get_mask(size: usize, device: &Device) -> Result<Tensor> {
let mask: Vec<_> = (0..size)
.flat_map(|i| (0..size).map(move |j| u8::from(j > i)))
.collect();
Tensor::from_slice(&mask, (size, size), device)
}
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
let shape = mask.shape();
let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
let m = mask.where_cond(&on_true, on_false)?;
Ok(m)
}