mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
Cleanup the main crate error and add a couple dedicated ones (#142)
* Cosmetic cleanups to the error enum. * More error cleanup. * Proper error handling rather than panicing. * Add some conv1d dedicated error.
This commit is contained in:
@ -261,6 +261,17 @@ impl<'a> Map2 for Conv1D<'a> {
|
||||
|
||||
struct MatMul((usize, usize, usize, usize));
|
||||
|
||||
impl MatMul {
|
||||
fn striding_error(&self, lhs_l: &Layout, rhs_l: &Layout, msg: &'static str) -> Error {
|
||||
Error::MatMulUnexpectedStriding(Box::new(crate::error::MatMulUnexpectedStriding {
|
||||
lhs_l: lhs_l.clone(),
|
||||
rhs_l: rhs_l.clone(),
|
||||
bmnk: self.0,
|
||||
msg,
|
||||
}))
|
||||
}
|
||||
}
|
||||
|
||||
impl Map2 for MatMul {
|
||||
const OP: &'static str = "mat_mul";
|
||||
|
||||
@ -290,19 +301,13 @@ impl Map2 for MatMul {
|
||||
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
|
||||
[stride] => stride,
|
||||
[] => m * k,
|
||||
_ => Err(Error::UnexpectedStriding {
|
||||
lhs_stride: lhs_stride.to_vec(),
|
||||
rhs_stride: rhs_stride.to_vec(),
|
||||
})?,
|
||||
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
|
||||
};
|
||||
let b_skip: usize = match rhs_stride[..rank - 2] {
|
||||
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
|
||||
[stride] => stride,
|
||||
[] => n * k,
|
||||
_ => Err(Error::UnexpectedStriding {
|
||||
lhs_stride: lhs_stride.to_vec(),
|
||||
rhs_stride: rhs_stride.to_vec(),
|
||||
})?,
|
||||
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
|
||||
};
|
||||
let c_skip: usize = m * n;
|
||||
|
||||
@ -369,19 +374,13 @@ impl Map2 for MatMul {
|
||||
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
|
||||
[stride] => stride,
|
||||
[] => m * k,
|
||||
_ => Err(Error::UnexpectedStriding {
|
||||
lhs_stride: lhs_stride.to_vec(),
|
||||
rhs_stride: rhs_stride.to_vec(),
|
||||
})?,
|
||||
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
|
||||
};
|
||||
let b_skip: usize = match rhs_stride[..rank - 2] {
|
||||
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
|
||||
[stride] => stride,
|
||||
[] => n * k,
|
||||
_ => Err(Error::UnexpectedStriding {
|
||||
lhs_stride: lhs_stride.to_vec(),
|
||||
rhs_stride: rhs_stride.to_vec(),
|
||||
})?,
|
||||
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
|
||||
};
|
||||
let c_skip: usize = m * n;
|
||||
|
||||
@ -395,11 +394,7 @@ impl Map2 for MatMul {
|
||||
} else if rhs_m1 == k && rhs_m2 == 1 {
|
||||
(k as i32, b'T')
|
||||
} else {
|
||||
Err(Error::MatMulNonContiguous {
|
||||
lhs_stride: lhs_stride.to_vec(),
|
||||
rhs_stride: rhs_stride.to_vec(),
|
||||
mnk: (m, n, k),
|
||||
})?
|
||||
Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?
|
||||
};
|
||||
// The b tensor has dims batching, m, k (lhs)
|
||||
let (ldb, transb) = if lhs_m1 == 1 && lhs_m2 == k {
|
||||
@ -407,11 +402,7 @@ impl Map2 for MatMul {
|
||||
} else if lhs_m1 == m && lhs_m2 == 1 {
|
||||
(m as i32, b'T')
|
||||
} else {
|
||||
Err(Error::MatMulNonContiguous {
|
||||
lhs_stride: lhs_stride.to_vec(),
|
||||
rhs_stride: rhs_stride.to_vec(),
|
||||
mnk: (m, n, k),
|
||||
})?
|
||||
Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?
|
||||
};
|
||||
|
||||
let mut dst = vec![T::zero(); b * m * n];
|
||||
|
@ -1,8 +1,17 @@
|
||||
use crate::{DType, DeviceLocation, Shape};
|
||||
use crate::{DType, DeviceLocation, Layout, Shape};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct MatMulUnexpectedStriding {
|
||||
pub lhs_l: Layout,
|
||||
pub rhs_l: Layout,
|
||||
pub bmnk: (usize, usize, usize, usize),
|
||||
pub msg: &'static str,
|
||||
}
|
||||
|
||||
/// Main library error type.
|
||||
#[derive(thiserror::Error, Debug)]
|
||||
pub enum Error {
|
||||
// === DType Errors ===
|
||||
#[error("{msg}, expected: {expected:?}, got: {got:?}")]
|
||||
UnexpectedDType {
|
||||
msg: &'static str,
|
||||
@ -10,6 +19,32 @@ pub enum Error {
|
||||
got: DType,
|
||||
},
|
||||
|
||||
#[error("dtype mismatch in {op}, lhs: {lhs:?}, rhs: {rhs:?}")]
|
||||
DTypeMismatchBinaryOp {
|
||||
lhs: DType,
|
||||
rhs: DType,
|
||||
op: &'static str,
|
||||
},
|
||||
|
||||
#[error("unsupported dtype {0:?} for op {1}")]
|
||||
UnsupportedDTypeForOp(DType, &'static str),
|
||||
|
||||
// === Dimension Index Errors ===
|
||||
#[error("{op}: dimension index {dim} out of range for {shape:?}")]
|
||||
DimOutOfRange {
|
||||
shape: Shape,
|
||||
dim: i32,
|
||||
op: &'static str,
|
||||
},
|
||||
|
||||
// === Shape Errors ===
|
||||
#[error("unexpected rank, expected: {expected}, got: {got} ({shape:?})")]
|
||||
UnexpectedNumberOfDims {
|
||||
expected: usize,
|
||||
got: usize,
|
||||
shape: Shape,
|
||||
},
|
||||
|
||||
#[error("{msg}, expected: {expected:?}, got: {got:?}")]
|
||||
UnexpectedShape {
|
||||
msg: String,
|
||||
@ -17,40 +52,6 @@ pub enum Error {
|
||||
got: Shape,
|
||||
},
|
||||
|
||||
#[error("{op}: dimension index {dim} out of range for {shape:?}")]
|
||||
DimOutOfRange {
|
||||
shape: Shape,
|
||||
dim: usize,
|
||||
op: &'static str,
|
||||
},
|
||||
|
||||
#[error("invalid args for narrow: {shape:?}, dim: {dim}, start: {start}, len:{len}")]
|
||||
NarrowInvalidArgs {
|
||||
shape: Shape,
|
||||
dim: usize,
|
||||
start: usize,
|
||||
len: usize,
|
||||
},
|
||||
|
||||
#[error("{op} only supports contiguous tensors")]
|
||||
RequiresContiguous { op: &'static str },
|
||||
|
||||
#[error("{op} expects at least one tensor")]
|
||||
OpRequiresAtLeastOneTensor { op: &'static str },
|
||||
|
||||
#[error("backward is not supported for {op}")]
|
||||
BackwardNotSupported { op: &'static str },
|
||||
|
||||
#[error("{op} invalid index {index} with vocab {vocab_size}")]
|
||||
InvalidIndex {
|
||||
op: &'static str,
|
||||
index: usize,
|
||||
vocab_size: usize,
|
||||
},
|
||||
|
||||
#[error("the candle crate has not been built with cuda support")]
|
||||
NotCompiledWithCudaSupport,
|
||||
|
||||
#[error(
|
||||
"Shape mismatch, got buffer of size {buffer_size} which is compatible with shape {shape:?}"
|
||||
)]
|
||||
@ -71,6 +72,7 @@ pub enum Error {
|
||||
nth_shape: Shape,
|
||||
},
|
||||
|
||||
// === Device Errors ===
|
||||
#[error("device mismatch in {op}, lhs: {lhs:?}, rhs: {rhs:?}")]
|
||||
DeviceMismatchBinaryOp {
|
||||
lhs: DeviceLocation,
|
||||
@ -78,27 +80,56 @@ pub enum Error {
|
||||
op: &'static str,
|
||||
},
|
||||
|
||||
#[error("dtype mismatch in {op}, lhs: {lhs:?}, rhs: {rhs:?}")]
|
||||
DTypeMismatchBinaryOp {
|
||||
lhs: DType,
|
||||
rhs: DType,
|
||||
op: &'static str,
|
||||
},
|
||||
|
||||
#[error("unexpected rank, expected: {expected}, got: {got} ({shape:?})")]
|
||||
UnexpectedNumberOfDims {
|
||||
expected: usize,
|
||||
got: usize,
|
||||
// === Op Specific Errors ===
|
||||
#[error("narrow invalid args {msg}: {shape:?}, dim: {dim}, start: {start}, len:{len}")]
|
||||
NarrowInvalidArgs {
|
||||
shape: Shape,
|
||||
dim: usize,
|
||||
start: usize,
|
||||
len: usize,
|
||||
msg: &'static str,
|
||||
},
|
||||
|
||||
// TODO this is temporary when we support arbitrary matmul
|
||||
#[error("temporary error where matmul doesn't support arbitrary striding {lhs_stride:?} x {rhs_stride:?}")]
|
||||
UnexpectedStriding {
|
||||
lhs_stride: Vec<usize>,
|
||||
rhs_stride: Vec<usize>,
|
||||
#[error("conv1d invalid args {msg}: inp: {inp_shape:?}, k: {k_shape:?}, pad: {padding}, stride: {stride}")]
|
||||
Conv1dInvalidArgs {
|
||||
inp_shape: Shape,
|
||||
k_shape: Shape,
|
||||
padding: usize,
|
||||
stride: usize,
|
||||
msg: &'static str,
|
||||
},
|
||||
|
||||
#[error("{op} invalid index {index} with vocab {vocab_size}")]
|
||||
InvalidIndex {
|
||||
op: &'static str,
|
||||
index: usize,
|
||||
vocab_size: usize,
|
||||
},
|
||||
|
||||
#[error("cannot broadcast {src_shape:?} to {dst_shape:?}")]
|
||||
BroadcastIncompatibleShapes { src_shape: Shape, dst_shape: Shape },
|
||||
|
||||
// Box indirection to avoid large variant.
|
||||
#[error("{0:?}")]
|
||||
MatMulUnexpectedStriding(Box<MatMulUnexpectedStriding>),
|
||||
|
||||
#[error("{op} only supports contiguous tensors")]
|
||||
RequiresContiguous { op: &'static str },
|
||||
|
||||
#[error("{op} expects at least one tensor")]
|
||||
OpRequiresAtLeastOneTensor { op: &'static str },
|
||||
|
||||
#[error("backward is not supported for {op}")]
|
||||
BackwardNotSupported { op: &'static str },
|
||||
|
||||
// === Other Errors ===
|
||||
#[error("the candle crate has not been built with cuda support")]
|
||||
NotCompiledWithCudaSupport,
|
||||
|
||||
#[error("cannot find tensor {path}")]
|
||||
CannotFindTensor { path: String },
|
||||
|
||||
// === Wrapped Errors ===
|
||||
#[error(transparent)]
|
||||
Cuda(Box<dyn std::error::Error + Send + Sync>),
|
||||
|
||||
@ -126,22 +157,6 @@ pub enum Error {
|
||||
|
||||
#[error("unsupported safetensor dtype {0:?}")]
|
||||
UnsupportedSafeTensorDtype(safetensors::Dtype),
|
||||
|
||||
#[error("unsupported dtype {0:?} for op {1}")]
|
||||
UnsupportedDTypeForOp(DType, &'static str),
|
||||
|
||||
#[error("cannot broadcast {src_shape:?} to {dst_shape:?}")]
|
||||
BroadcastIncompatibleShapes { src_shape: Shape, dst_shape: Shape },
|
||||
|
||||
#[error("matmul is only supported for contiguous tensors lstride: {lhs_stride:?} rstride: {rhs_stride:?} mnk: {mnk:?}")]
|
||||
MatMulNonContiguous {
|
||||
lhs_stride: Vec<usize>,
|
||||
rhs_stride: Vec<usize>,
|
||||
mnk: (usize, usize, usize),
|
||||
},
|
||||
|
||||
#[error("cannot find tensor {path}")]
|
||||
CannotFindTensor { path: String },
|
||||
}
|
||||
|
||||
pub type Result<T> = std::result::Result<T, Error>;
|
||||
|
@ -60,20 +60,26 @@ impl Layout {
|
||||
self.shape.is_fortran_contiguous(&self.stride)
|
||||
}
|
||||
|
||||
pub(crate) fn narrow(&self, dim: usize, start: usize, length: usize) -> Result<Self> {
|
||||
pub(crate) fn narrow(&self, dim: usize, start: usize, len: usize) -> Result<Self> {
|
||||
let dims = self.shape().dims();
|
||||
if dim >= dims.len() {
|
||||
Err(Error::UnexpectedNumberOfDims {
|
||||
expected: dim + 1,
|
||||
got: dims.len(),
|
||||
Err(Error::DimOutOfRange {
|
||||
shape: self.shape().clone(),
|
||||
dim: dim as i32,
|
||||
op: "narrow",
|
||||
})?
|
||||
}
|
||||
if start + length > dims[dim] {
|
||||
todo!("add a proper error: out of bounds for narrow {dim} {start} {length} {dims:?}")
|
||||
if start + len > dims[dim] {
|
||||
Err(Error::NarrowInvalidArgs {
|
||||
shape: self.shape.clone(),
|
||||
dim,
|
||||
start,
|
||||
len,
|
||||
msg: "start + len > dim_len",
|
||||
})?
|
||||
}
|
||||
let mut dims = dims.to_vec();
|
||||
dims[dim] = length;
|
||||
dims[dim] = len;
|
||||
Ok(Self {
|
||||
shape: Shape::from(dims),
|
||||
stride: self.stride.clone(),
|
||||
|
@ -194,7 +194,7 @@ impl Dim for usize {
|
||||
if dim >= shape.dims().len() {
|
||||
Err(Error::DimOutOfRange {
|
||||
shape: shape.clone(),
|
||||
dim,
|
||||
dim: dim as i32,
|
||||
op,
|
||||
})?
|
||||
} else {
|
||||
@ -207,7 +207,7 @@ impl Dim for usize {
|
||||
if dim > shape.dims().len() {
|
||||
Err(Error::DimOutOfRange {
|
||||
shape: shape.clone(),
|
||||
dim,
|
||||
dim: dim as i32,
|
||||
op,
|
||||
})?
|
||||
} else {
|
||||
@ -221,30 +221,36 @@ pub enum D {
|
||||
Minus2,
|
||||
}
|
||||
|
||||
impl D {
|
||||
fn out_of_range(&self, shape: &Shape, op: &'static str) -> Error {
|
||||
let dim = match self {
|
||||
Self::Minus1 => -1,
|
||||
Self::Minus2 => -2,
|
||||
};
|
||||
Error::DimOutOfRange {
|
||||
shape: shape.clone(),
|
||||
dim,
|
||||
op,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Dim for D {
|
||||
fn to_index(&self, shape: &Shape, op: &'static str) -> Result<usize> {
|
||||
let rank = shape.rank();
|
||||
match self {
|
||||
Self::Minus1 if rank >= 1 => Ok(rank - 1),
|
||||
Self::Minus2 if rank >= 2 => Ok(rank - 2),
|
||||
_ => Err(Error::DimOutOfRange {
|
||||
shape: shape.clone(),
|
||||
dim: 42, // TODO: Have an adequate error
|
||||
op,
|
||||
}),
|
||||
_ => Err(self.out_of_range(shape, op)),
|
||||
}
|
||||
}
|
||||
|
||||
fn to_index_plus_one(&self, shape: &Shape, op: &'static str) -> Result<usize> {
|
||||
let rank = shape.rank();
|
||||
match self {
|
||||
Self::Minus1 if rank >= 1 => Ok(rank),
|
||||
Self::Minus2 if rank >= 2 => Ok(rank - 1),
|
||||
_ => Err(Error::DimOutOfRange {
|
||||
shape: shape.clone(),
|
||||
dim: 42, // TODO: Have an adequate error
|
||||
op,
|
||||
}),
|
||||
Self::Minus1 => Ok(rank),
|
||||
Self::Minus2 if rank >= 1 => Ok(rank - 1),
|
||||
_ => Err(self.out_of_range(shape, op)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -490,7 +490,7 @@ impl Tensor {
|
||||
if dim >= self.dims().len() {
|
||||
Err(Error::DimOutOfRange {
|
||||
shape: self.shape().clone(),
|
||||
dim,
|
||||
dim: dim as i32,
|
||||
op,
|
||||
})?
|
||||
} else {
|
||||
@ -509,6 +509,7 @@ impl Tensor {
|
||||
dim,
|
||||
start,
|
||||
len,
|
||||
msg: "start + len > dim_len",
|
||||
})?
|
||||
}
|
||||
if start == 0 && dims[dim] == len {
|
||||
@ -576,10 +577,22 @@ impl Tensor {
|
||||
let (b_size, c_in, l_in) = match *self.dims() {
|
||||
[b_size, c_in, l_in] => (Some(b_size), c_in, l_in),
|
||||
[c_in, l_in] => (None, c_in, l_in),
|
||||
_ => todo!("proper error message"),
|
||||
_ => Err(Error::Conv1dInvalidArgs {
|
||||
inp_shape: self.shape().clone(),
|
||||
k_shape: kernel.shape().clone(),
|
||||
padding,
|
||||
stride,
|
||||
msg: "input rank is not 2 or 3",
|
||||
})?,
|
||||
};
|
||||
if c_in != c_in_k {
|
||||
todo!("proper error message")
|
||||
Err(Error::Conv1dInvalidArgs {
|
||||
inp_shape: self.shape().clone(),
|
||||
k_shape: kernel.shape().clone(),
|
||||
padding,
|
||||
stride,
|
||||
msg: "the number of in-channels on the input doesn't match the kernel size",
|
||||
})?
|
||||
}
|
||||
let params = crate::conv::ParamsConv1D {
|
||||
b_size,
|
||||
|
@ -157,8 +157,9 @@ impl<'a> VarBuilder<'a> {
|
||||
routing,
|
||||
safetensors,
|
||||
} => {
|
||||
// Unwrap or 0 just to let the proper error flow.
|
||||
let index = routing.get(&path).unwrap_or(&0);
|
||||
let index = routing.get(&path).ok_or_else(|| Error::CannotFindTensor {
|
||||
path: path.to_string(),
|
||||
})?;
|
||||
safetensors[*index]
|
||||
.tensor(&path, &data.device)?
|
||||
.to_dtype(data.dtype)?
|
||||
|
Reference in New Issue
Block a user