Improved launch config for layer-norm/rms-norm.

This commit is contained in:
Laurent
2024-11-01 17:59:22 +01:00
parent 7ac0de15a9
commit aaa44a1948
2 changed files with 27 additions and 12 deletions

View File

@ -70,10 +70,9 @@ static __device__ __forceinline__ float warp_reduce_sum(float x) {
// LayerNorm implementation adapted from ggml, accumulation is made using f32.
// https://github.com/ggerganov/llama.cpp/blob/d59bd97065cd7ded6c4ecab54b1d5e0b1b11e318/ggml-cuda.cu#L477
template <typename T>
__device__ void layernorm(const T * x, T * dst, const T * alpha, const T * beta, const int ncols, const float eps) {
__device__ void layernorm(const T * x, T * dst, const T * alpha, const T * beta, const int ncols, const int block_size, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
const int tid = threadIdx.x;
const int block_size = blockDim.x;
float2 mean_var = make_float2(0.f, 0.f);
@ -134,10 +133,9 @@ __device__ void layernorm(const T * x, T * dst, const T * alpha, const T * beta,
// RmsNorm implementation adapted from ggml, accumulation is made using f32.
// https://github.com/ggerganov/llama.cpp/blob/d59bd97065cd7ded6c4ecab54b1d5e0b1b11e318/ggml-cuda.cu#L523
template <typename T>
__device__ void rmsnorm(const T * x, T * dst, const T * alpha, const int ncols, const float eps) {
__device__ void rmsnorm(const T * x, T * dst, const T * alpha, const int ncols, const int block_size, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
const int tid = threadIdx.x;
const int block_size = blockDim.x;
float tmp = 0.0f; // partial sum for thread in warp
@ -530,15 +528,15 @@ fast_argmax(const size_t src_numel, const size_t el_to_sum_per_block,
#define RMSNORM_OP(TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const TYPENAME *src, TYPENAME *dst, const TYPENAME *alpha, \
const int n_cols, const float eps) { \
rmsnorm<TYPENAME>(src, dst, alpha, n_cols, eps); \
const int n_cols, const int block_size, const float eps) { \
rmsnorm<TYPENAME>(src, dst, alpha, n_cols, block_size, eps); \
} \
#define LAYERNORM_OP(TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const TYPENAME *src, TYPENAME *dst, const TYPENAME *alpha, \
const TYPENAME *beta, const int n_cols, const float eps) { \
layernorm<TYPENAME>(src, dst, alpha, beta, n_cols, eps); \
const TYPENAME *beta, const int n_cols, const int block_size, const float eps) { \
layernorm<TYPENAME>(src, dst, alpha, beta, n_cols, block_size, eps); \
} \
#define ROPE_OP(TYPENAME, FN_NAME, FN_NAME_I, FN_NAME_THD) \

View File

@ -543,15 +543,23 @@ impl candle::CustomOp2 for RmsNorm {
let dim_m1 = dims[dims.len() - 1];
let (n_rows, n_cols) = (el / dim_m1, dim_m1);
let block_size = if n_cols < 1024 { 32 } else { 1024 };
let cfg = LaunchConfig {
grid_dim: (n_rows as u32, 1, 1),
block_dim: (1024, 1, 1),
block_dim: (block_size, 1, 1),
shared_mem_bytes: 0,
};
let func = dev.get_or_load_func(&kernel_name::<T>("rmsnorm"), kernels::REDUCE)?;
// SAFETY: Set later by running the kernel.
let dst = unsafe { dev.alloc::<T>(el) }.w()?;
let params = (&src, &dst, &alpha, n_cols as i32, self.eps);
let params = (
&src,
&dst,
&alpha,
n_cols as i32,
block_size as i32,
self.eps,
);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(dst)
@ -776,15 +784,24 @@ impl candle::CustomOp3 for LayerNorm {
let dim_m1 = dims[dims.len() - 1];
let (n_rows, n_cols) = (el / dim_m1, dim_m1);
let block_size = if n_cols < 1024 { 32 } else { 1024 };
let cfg = LaunchConfig {
grid_dim: (n_rows as u32, 1, 1),
block_dim: (1024, 1, 1),
block_dim: (block_size, 1, 1),
shared_mem_bytes: 0,
};
let func = dev.get_or_load_func(&kernel_name::<T>("layernorm"), kernels::REDUCE)?;
// SAFETY: Set later by running the kernel.
let dst = unsafe { dev.alloc::<T>(el) }.w()?;
let params = (&src, &dst, &alpha, &beta, n_cols as i32, self.eps);
let params = (
&src,
&dst,
&alpha,
&beta,
n_cols as i32,
block_size as i32,
self.eps,
);
// SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?;
Ok(dst)