mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 19:58:35 +00:00
Detach the tensors on batch-norm eval. (#1702)
* Detach the tensors on batch-norm eval. * Fix pyo3 bindings. * Black tweak. * Formatting. * Also update the pyo3-onnx formatting. * Apply black.
This commit is contained in:
@ -88,23 +88,27 @@ class QTensor:
|
||||
Dequantizes the tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def ggml_dtype(self) -> str:
|
||||
"""
|
||||
Gets the tensors quantized dtype.
|
||||
"""
|
||||
pass
|
||||
|
||||
def matmul_t(self, lhs: Tensor) -> Tensor:
|
||||
"""
|
||||
Performs a quantized matrix multiplication, with the quantized tensor as the right hand side.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def rank(self) -> int:
|
||||
"""
|
||||
Gets the rank of the tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def shape(self) -> Tuple[int]:
|
||||
"""
|
||||
@ -119,178 +123,213 @@ class Tensor:
|
||||
|
||||
def __init__(self, data: _ArrayLike):
|
||||
pass
|
||||
|
||||
def __add__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
|
||||
"""
|
||||
Add a scalar to a tensor or two tensors together.
|
||||
"""
|
||||
pass
|
||||
|
||||
def __eq__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
|
||||
"""
|
||||
Compare a tensor with a scalar or one tensor with another.
|
||||
"""
|
||||
pass
|
||||
|
||||
def __ge__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
|
||||
"""
|
||||
Compare a tensor with a scalar or one tensor with another.
|
||||
"""
|
||||
pass
|
||||
|
||||
def __getitem__(self, index: Union[Index, Tensor, Sequence[Index]]) -> "Tensor":
|
||||
"""
|
||||
Return a slice of a tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def __gt__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
|
||||
"""
|
||||
Compare a tensor with a scalar or one tensor with another.
|
||||
"""
|
||||
pass
|
||||
|
||||
def __le__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
|
||||
"""
|
||||
Compare a tensor with a scalar or one tensor with another.
|
||||
"""
|
||||
pass
|
||||
|
||||
def __lt__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
|
||||
"""
|
||||
Compare a tensor with a scalar or one tensor with another.
|
||||
"""
|
||||
pass
|
||||
|
||||
def __mul__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
|
||||
"""
|
||||
Multiply a tensor by a scalar or one tensor by another.
|
||||
"""
|
||||
pass
|
||||
|
||||
def __ne__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
|
||||
"""
|
||||
Compare a tensor with a scalar or one tensor with another.
|
||||
"""
|
||||
pass
|
||||
|
||||
def __radd__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
|
||||
"""
|
||||
Add a scalar to a tensor or two tensors together.
|
||||
"""
|
||||
pass
|
||||
|
||||
def __richcmp__(self, rhs: Union[Tensor, Scalar], op) -> "Tensor":
|
||||
"""
|
||||
Compare a tensor with a scalar or one tensor with another.
|
||||
"""
|
||||
pass
|
||||
|
||||
def __rmul__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
|
||||
"""
|
||||
Multiply a tensor by a scalar or one tensor by another.
|
||||
"""
|
||||
pass
|
||||
|
||||
def __sub__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
|
||||
"""
|
||||
Subtract a scalar from a tensor or one tensor from another.
|
||||
"""
|
||||
pass
|
||||
|
||||
def __truediv__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
|
||||
"""
|
||||
Divide a tensor by a scalar or one tensor by another.
|
||||
"""
|
||||
pass
|
||||
|
||||
def abs(self) -> Tensor:
|
||||
"""
|
||||
Performs the `abs` operation on the tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def argmax_keepdim(self, dim: int) -> Tensor:
|
||||
"""
|
||||
Returns the indices of the maximum value(s) across the selected dimension.
|
||||
"""
|
||||
pass
|
||||
|
||||
def argmin_keepdim(self, dim: int) -> Tensor:
|
||||
"""
|
||||
Returns the indices of the minimum value(s) across the selected dimension.
|
||||
"""
|
||||
pass
|
||||
|
||||
def broadcast_add(self, rhs: Tensor) -> Tensor:
|
||||
"""
|
||||
Adds the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def broadcast_as(self, *shape: Shape) -> Tensor:
|
||||
"""
|
||||
Broadcasts the tensor to the given shape.
|
||||
"""
|
||||
pass
|
||||
|
||||
def broadcast_div(self, rhs: Tensor) -> Tensor:
|
||||
"""
|
||||
Divides the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def broadcast_left(self, *shape: Shape) -> Tensor:
|
||||
"""
|
||||
Broadcasts the tensor to the given shape, adding new dimensions on the left.
|
||||
"""
|
||||
pass
|
||||
|
||||
def broadcast_mul(self, rhs: Tensor) -> Tensor:
|
||||
"""
|
||||
Multiplies the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def broadcast_sub(self, rhs: Tensor) -> Tensor:
|
||||
"""
|
||||
Subtracts the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def contiguous(self) -> Tensor:
|
||||
"""
|
||||
Makes the tensor contiguous in memory.
|
||||
"""
|
||||
pass
|
||||
|
||||
def copy(self) -> Tensor:
|
||||
"""
|
||||
Returns a copy of the tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def cos(self) -> Tensor:
|
||||
"""
|
||||
Performs the `cos` operation on the tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def detach(self) -> Tensor:
|
||||
"""
|
||||
Detach the tensor from the computation graph.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def device(self) -> Device:
|
||||
"""
|
||||
Gets the tensor's device.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def dtype(self) -> DType:
|
||||
"""
|
||||
Gets the tensor's dtype.
|
||||
"""
|
||||
pass
|
||||
|
||||
def exp(self) -> Tensor:
|
||||
"""
|
||||
Performs the `exp` operation on the tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def flatten_all(self) -> Tensor:
|
||||
"""
|
||||
Flattens the tensor into a 1D tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def flatten_from(self, dim: int) -> Tensor:
|
||||
"""
|
||||
Flattens the tensor on the dimension indexes from `dim` (inclusive) to the last dimension.
|
||||
"""
|
||||
pass
|
||||
|
||||
def flatten_to(self, dim: int) -> Tensor:
|
||||
"""
|
||||
Flattens the tensor on the dimension indexes from `0` to `dim` (inclusive).
|
||||
"""
|
||||
pass
|
||||
|
||||
def get(self, index: int) -> Tensor:
|
||||
"""
|
||||
Gets the value at the specified index.
|
||||
"""
|
||||
pass
|
||||
|
||||
def index_select(self, rhs: Tensor, dim: int) -> Tensor:
|
||||
"""
|
||||
Select values for the input tensor at the target indexes across the specified dimension.
|
||||
@ -302,161 +341,192 @@ class Tensor:
|
||||
tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def is_contiguous(self) -> bool:
|
||||
"""
|
||||
Returns true if the tensor is contiguous in C order.
|
||||
"""
|
||||
pass
|
||||
|
||||
def is_fortran_contiguous(self) -> bool:
|
||||
"""
|
||||
Returns true if the tensor is contiguous in Fortran order.
|
||||
"""
|
||||
pass
|
||||
|
||||
def log(self) -> Tensor:
|
||||
"""
|
||||
Performs the `log` operation on the tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def matmul(self, rhs: Tensor) -> Tensor:
|
||||
"""
|
||||
Performs a matrix multiplication between the two tensors.
|
||||
"""
|
||||
pass
|
||||
|
||||
def max_keepdim(self, dim: int) -> Tensor:
|
||||
"""
|
||||
Gathers the maximum value across the selected dimension.
|
||||
"""
|
||||
pass
|
||||
|
||||
def mean_all(self) -> Tensor:
|
||||
"""
|
||||
Returns the mean of the tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def min_keepdim(self, dim: int) -> Tensor:
|
||||
"""
|
||||
Gathers the minimum value across the selected dimension.
|
||||
"""
|
||||
pass
|
||||
|
||||
def narrow(self, dim: int, start: int, len: int) -> Tensor:
|
||||
"""
|
||||
Returns a new tensor that is a narrowed version of the input, the dimension `dim`
|
||||
ranges from `start` to `start + len`.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def nelement(self) -> int:
|
||||
"""
|
||||
Gets the tensor's element count.
|
||||
"""
|
||||
pass
|
||||
|
||||
def powf(self, p: float) -> Tensor:
|
||||
"""
|
||||
Performs the `pow` operation on the tensor with the given exponent.
|
||||
"""
|
||||
pass
|
||||
|
||||
def quantize(self, quantized_dtype: str) -> QTensor:
|
||||
"""
|
||||
Quantize the tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def rank(self) -> int:
|
||||
"""
|
||||
Gets the tensor's rank.
|
||||
"""
|
||||
pass
|
||||
|
||||
def recip(self) -> Tensor:
|
||||
"""
|
||||
Get the `recip` of the tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def reshape(self, *shape: Shape) -> Tensor:
|
||||
"""
|
||||
Reshapes the tensor to the given shape.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def shape(self) -> Tuple[int]:
|
||||
"""
|
||||
Gets the tensor's shape.
|
||||
"""
|
||||
pass
|
||||
|
||||
def sin(self) -> Tensor:
|
||||
"""
|
||||
Performs the `sin` operation on the tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def sqr(self) -> Tensor:
|
||||
"""
|
||||
Squares the tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def sqrt(self) -> Tensor:
|
||||
"""
|
||||
Calculates the square root of the tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def squeeze(self, dim: int) -> Tensor:
|
||||
"""
|
||||
Creates a new tensor with the specified dimension removed if its size was one.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def stride(self) -> Tuple[int]:
|
||||
"""
|
||||
Gets the tensor's strides.
|
||||
"""
|
||||
pass
|
||||
|
||||
def sum_all(self) -> Tensor:
|
||||
"""
|
||||
Returns the sum of the tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def sum_keepdim(self, dim: Union[int, List[int]]) -> Tensor:
|
||||
"""
|
||||
Returns the sum of all elements in the input tensor. The sum is performed over all the input dimensions.
|
||||
"""
|
||||
pass
|
||||
|
||||
def t(self) -> Tensor:
|
||||
"""
|
||||
Transposes the tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
def to(self, *args, **kwargs) -> Tensor:
|
||||
"""
|
||||
Performs Tensor dtype and/or device conversion.
|
||||
"""
|
||||
pass
|
||||
|
||||
def to_device(self, device: Union[str, Device]) -> Tensor:
|
||||
"""
|
||||
Move the tensor to a new device.
|
||||
"""
|
||||
pass
|
||||
|
||||
def to_dtype(self, dtype: Union[str, DType]) -> Tensor:
|
||||
"""
|
||||
Convert the tensor to a new dtype.
|
||||
"""
|
||||
pass
|
||||
|
||||
def to_torch(self) -> torch.Tensor:
|
||||
"""
|
||||
Converts candle's tensor to pytorch's tensor
|
||||
"""
|
||||
pass
|
||||
|
||||
def transpose(self, dim1: int, dim2: int) -> Tensor:
|
||||
"""
|
||||
Returns a tensor that is a transposed version of the input, the given dimensions are swapped.
|
||||
"""
|
||||
pass
|
||||
|
||||
def unsqueeze(self, dim: int) -> Tensor:
|
||||
"""
|
||||
Creates a new tensor with a dimension of size one inserted at the specified position.
|
||||
"""
|
||||
pass
|
||||
|
||||
def values(self) -> _ArrayLike:
|
||||
"""
|
||||
Gets the tensor's data as a Python scalar or array-like object.
|
||||
"""
|
||||
pass
|
||||
|
||||
def where_cond(self, on_true: Tensor, on_false: Tensor) -> Tensor:
|
||||
"""
|
||||
Returns a tensor with the same shape as the input tensor, the values are taken from
|
||||
|
@ -57,12 +57,10 @@ class Sequential(Module):
|
||||
_modules: Dict[str, Module] # type: ignore[assignment]
|
||||
|
||||
@overload
|
||||
def __init__(self, *args: Module) -> None:
|
||||
...
|
||||
def __init__(self, *args: Module) -> None: ...
|
||||
|
||||
@overload
|
||||
def __init__(self, arg: "OrderedDict[str, Module]") -> None:
|
||||
...
|
||||
def __init__(self, arg: "OrderedDict[str, Module]") -> None: ...
|
||||
|
||||
def __init__(self, *args):
|
||||
super().__init__()
|
||||
|
@ -204,12 +204,10 @@ class Module:
|
||||
T_destination = TypeVar("T_destination", bound=Dict[str, Any])
|
||||
|
||||
@overload
|
||||
def state_dict(self, *, destination: T_destination, prefix: str = ..., keep_vars: bool = ...) -> T_destination:
|
||||
...
|
||||
def state_dict(self, *, destination: T_destination, prefix: str = ..., keep_vars: bool = ...) -> T_destination: ...
|
||||
|
||||
@overload
|
||||
def state_dict(self, *, prefix: str = ..., keep_vars: bool = ...) -> Dict[str, Any]:
|
||||
...
|
||||
def state_dict(self, *, prefix: str = ..., keep_vars: bool = ...) -> Dict[str, Any]: ...
|
||||
|
||||
def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
|
||||
r"""Returns a dictionary containing references to the whole state of the module.
|
||||
@ -586,12 +584,10 @@ class Module:
|
||||
self: T,
|
||||
device: str = ...,
|
||||
dtype: Optional[Union[DType, str]] = ...,
|
||||
) -> T:
|
||||
...
|
||||
) -> T: ...
|
||||
|
||||
@overload
|
||||
def to(self: T, dtype: Union[DType, str]) -> T:
|
||||
...
|
||||
def to(self: T, dtype: Union[DType, str]) -> T: ...
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
r"""Moves and/or casts the parameters and buffers.
|
||||
|
@ -14,6 +14,7 @@ class LayerNorm(Module):
|
||||
math::
|
||||
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
|
||||
"""
|
||||
|
||||
__constants__ = ["normalized_shape", "eps"]
|
||||
normalized_shape: Tuple[int, ...]
|
||||
eps: float
|
||||
|
@ -11,59 +11,69 @@ class ONNXModel:
|
||||
|
||||
def __init__(self, path: str):
|
||||
pass
|
||||
|
||||
@property
|
||||
def doc_string(self) -> str:
|
||||
"""
|
||||
The doc string of the model.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def domain(self) -> str:
|
||||
"""
|
||||
The domain of the operator set of the model.
|
||||
"""
|
||||
pass
|
||||
|
||||
def initializers(self) -> Dict[str, Tensor]:
|
||||
"""
|
||||
Get the weights of the model.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def inputs(self) -> Optional[Dict[str, ONNXTensorDescription]]:
|
||||
"""
|
||||
The inputs of the model.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def ir_version(self) -> int:
|
||||
"""
|
||||
The version of the IR this model targets.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def model_version(self) -> int:
|
||||
"""
|
||||
The version of the model.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def outputs(self) -> Optional[Dict[str, ONNXTensorDescription]]:
|
||||
"""
|
||||
The outputs of the model.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def producer_name(self) -> str:
|
||||
"""
|
||||
The producer of the model.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def producer_version(self) -> str:
|
||||
"""
|
||||
The version of the producer of the model.
|
||||
"""
|
||||
pass
|
||||
|
||||
def run(self, inputs: Dict[str, Tensor]) -> Dict[str, Tensor]:
|
||||
"""
|
||||
Run the model on the given inputs.
|
||||
@ -81,6 +91,7 @@ class ONNXTensorDescription:
|
||||
The data type of the tensor.
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
def shape(self) -> Tuple[Union[int, str, Any]]:
|
||||
"""
|
||||
|
Reference in New Issue
Block a user