CLIP model implementation with example (#1950)

* CLIP model implementation with example

* CLIP Implementation fixes, batch images

* CLIP model remove images from git

* CLIP model remove unnecessary use of batch_indices
This commit is contained in:
Tigran Zhampeissov
2024-03-28 17:44:12 +05:00
committed by GitHub
parent b3484e7a5e
commit b0340d72ec
6 changed files with 942 additions and 0 deletions

View File

@ -0,0 +1,46 @@
Contrastive Language-Image Pre-Training
Contrastive Language-Image Pre-Training (CLIP) is an architecture trained on
pairs of images with related texts.
https://github.com/openai/CLIP
https://github.com/huggingface/transformers/tree/f6fa0f0bf0796ac66f201f23bdb8585de1609add/src/transformers/models/clip
## Running on an example on cpu
```
$ cargo run --example clip --release -- --images "candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg","candle-examples/examples/yolo-v8/assets/bike.jpg" --cpu --sequences "a cycling race","a photo of two cats","a robot holding a candle"
Results for image: candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg
INFO clip: Probability: 0.0000% Text: a cycling race
INFO clip: Probability: 0.0000% Text: a photo of two cats
INFO clip: Probability: 100.0000% Text: a robot holding a candle
Results for image: candle-examples/examples/yolo-v8/assets/bike.jpg
INFO clip: Probability: 99.9999% Text: a cycling race
INFO clip: Probability: 0.0001% Text: a photo of two cats
INFO clip: Probability: 0.0000% Text: a robot holding a candle
```
## Running on an example with metal feature (mac)
```
$ cargo run --features metal --example clip --release -- --images "candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg","candle-examples/examples/yolo-v8/assets/bike.jpg" --cpu --sequences "a cycling race","a photo of two cats","a robot holding a candle"
Results for image: candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg
INFO clip: Probability: 0.0000% Text: a cycling race
INFO clip: Probability: 0.0000% Text: a photo of two cats
INFO clip: Probability: 100.0000% Text: a robot holding a candle
Results for image: candle-examples/examples/yolo-v8/assets/bike.jpg
INFO clip: Probability: 99.9999% Text: a cycling race
INFO clip: Probability: 0.0001% Text: a photo of two cats
INFO clip: Probability: 0.0000% Text: a robot holding a candle
```

View File

@ -0,0 +1,202 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::Error as E;
use clap::Parser;
use candle::{DType, Device, Tensor};
use candle_nn::{ops::softmax, VarBuilder};
use candle_transformers::models::clip;
use tokenizers::Tokenizer;
use tracing::info;
#[derive(Parser)]
struct Args {
#[arg(long)]
model: Option<String>,
#[arg(long)]
tokenizer: Option<String>,
#[arg(long, use_value_delimiter = true)]
images: Option<Vec<String>>,
#[arg(long)]
cpu: bool,
#[arg(long, use_value_delimiter = true)]
sequences: Option<Vec<String>>,
}
fn load_image<T: AsRef<std::path::Path>>(path: T, image_size: usize) -> anyhow::Result<Tensor> {
let img = image::io::Reader::open(path)?.decode()?;
let (height, width) = (image_size, image_size);
let img = img.resize_to_fill(
width as u32,
height as u32,
image::imageops::FilterType::Triangle,
);
let img = img.to_rgb8();
let img = img.into_raw();
let img = Tensor::from_vec(img, (height, width, 3), &Device::Cpu)?
.permute((2, 0, 1))?
.to_dtype(DType::F32)?
.affine(2. / 255., -1.)?;
// .unsqueeze(0)?;
Ok(img)
}
fn load_images<T: AsRef<std::path::Path>>(
paths: &Vec<T>,
image_size: usize,
) -> anyhow::Result<Tensor> {
let mut images = vec![];
for path in paths {
let tensor = load_image(path, image_size)?;
images.push(tensor);
}
let images = Tensor::stack(&images, 0)?;
Ok(images)
}
pub fn main() -> anyhow::Result<()> {
// std::env::set_var("RUST_BACKTRACE", "full");
let args = Args::parse();
tracing_subscriber::fmt::init();
let model_file = match args.model {
None => {
let api = hf_hub::api::sync::Api::new()?;
let api = api.repo(hf_hub::Repo::with_revision(
"openai/clip-vit-base-patch32".to_string(),
hf_hub::RepoType::Model,
"refs/pr/15".to_string(),
));
api.get("model.safetensors")?
}
Some(model) => model.into(),
};
let tokenizer = get_tokenizer(args.tokenizer)?;
let config = clip::ClipConfig::vit_base_patch32();
let device = candle_examples::device(args.cpu)?;
let vec_imgs = match args.images {
Some(imgs) => imgs,
None => vec![
"candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg".to_string(),
"candle-examples/examples/yolo-v8/assets/bike.jpg".to_string(),
],
};
// let image = load_image(args.image, config.image_size)?.to_device(&device)?;
let images = load_images(&vec_imgs, config.image_size)?.to_device(&device)?;
let vb =
unsafe { VarBuilder::from_mmaped_safetensors(&[model_file.clone()], DType::F32, &device)? };
let model = clip::ClipModel::new(vb, &config)?;
let (input_ids, vec_seq) = tokenize_sequences(args.sequences, &tokenizer, &device)?;
let (_logits_per_text, logits_per_image) = model.forward(&images, &input_ids)?;
let softmax_image = softmax(&logits_per_image, 1)?;
let softmax_image_vec = softmax_image.flatten_all()?.to_vec1::<f32>()?;
info!("softmax_image_vec: {:?}", softmax_image_vec);
let probability_vec = softmax_image_vec
.iter()
.map(|v| v * 100.0)
.collect::<Vec<f32>>();
let probability_per_image = probability_vec.len() / vec_imgs.len();
for (i, img) in vec_imgs.iter().enumerate() {
let start = i * probability_per_image;
let end = start + probability_per_image;
let prob = &probability_vec[start..end];
info!("\n\nResults for image: {}\n", img);
for (i, p) in prob.iter().enumerate() {
info!("Probability: {:.4}% Text: {} ", p, vec_seq[i]);
}
}
Ok(())
}
pub fn get_tokenizer(tokenizer: Option<String>) -> anyhow::Result<Tokenizer> {
let tokenizer = match tokenizer {
None => {
let api = hf_hub::api::sync::Api::new()?;
let api = api.repo(hf_hub::Repo::with_revision(
"openai/clip-vit-base-patch32".to_string(),
hf_hub::RepoType::Model,
"refs/pr/15".to_string(),
));
api.get("tokenizer.json")?
}
Some(file) => file.into(),
};
Tokenizer::from_file(tokenizer).map_err(E::msg)
}
pub fn tokenize_sequences(
sequences: Option<Vec<String>>,
tokenizer: &Tokenizer,
device: &Device,
) -> anyhow::Result<(Tensor, Vec<String>)> {
let pad_id = *tokenizer
.get_vocab(true)
.get("<|endoftext|>")
.ok_or(E::msg("No pad token"))?;
let vec_seq = match sequences {
Some(seq) => seq,
None => vec![
"a cycling race".to_string(),
"a photo of two cats".to_string(),
"a robot holding a candle".to_string(),
],
};
let mut tokens = vec![];
for seq in vec_seq.clone() {
let encoding = tokenizer.encode(seq, true).map_err(E::msg)?;
tokens.push(encoding.get_ids().to_vec());
}
let max_len = tokens.iter().map(|v| v.len()).max().unwrap_or(0);
// Pad the sequences to have the same length
for token_vec in tokens.iter_mut() {
let len_diff = max_len - token_vec.len();
if len_diff > 0 {
token_vec.extend(vec![pad_id; len_diff]);
}
}
let input_ids = Tensor::new(tokens, device)?;
Ok((input_ids, vec_seq))
}

View File

@ -0,0 +1,167 @@
//! Contrastive Language-Image Pre-Training
//!
//! Contrastive Language-Image Pre-Training (CLIP) is an architecture trained on
//! pairs of images with related texts.
//!
//! https://github.com/openai/CLIP
//! https://github.com/huggingface/transformers/tree/f6fa0f0bf0796ac66f201f23bdb8585de1609add/src/transformers/models/clip
use self::{
text_model::{Activation, ClipTextTransformer},
vision_model::ClipVisionTransformer,
};
use candle::{Result, Tensor, D};
use candle_nn::Module;
use tracing::warn;
pub mod text_model;
pub mod vision_model;
pub struct ClipModel {
text_model: ClipTextTransformer,
vision_model: ClipVisionTransformer,
visual_projection: candle_nn::Linear,
text_projection: candle_nn::Linear,
logit_scale: Tensor,
}
pub enum EncoderConfig {
Text(text_model::ClipTextConfig),
Vision(vision_model::ClipVisionConfig),
}
impl EncoderConfig {
pub fn embed_dim(&self) -> usize {
match self {
Self::Text(c) => c.embed_dim,
Self::Vision(c) => c.embed_dim,
}
}
pub fn num_attention_heads(&self) -> usize {
match self {
Self::Text(c) => c.num_attention_heads,
Self::Vision(c) => c.num_attention_heads,
}
}
pub fn intermediate_size(&self) -> usize {
match self {
Self::Text(c) => c.intermediate_size,
Self::Vision(c) => c.intermediate_size,
}
}
pub fn num_hidden_layers(&self) -> usize {
match self {
Self::Text(c) => c.num_hidden_layers,
Self::Vision(c) => c.num_hidden_layers,
}
}
pub fn activation(&self) -> Activation {
match self {
Self::Text(_c) => Activation::QuickGelu,
Self::Vision(c) => c.activation,
}
}
}
pub struct ClipConfig {
pub text_config: text_model::ClipTextConfig,
pub vision_config: vision_model::ClipVisionConfig,
pub logit_scale_init_value: f32,
pub image_size: usize,
}
impl ClipConfig {
// base image size is 224, model size is 600Mb
pub fn vit_base_patch32() -> Self {
let text_config = text_model::ClipTextConfig::vit_base_patch32();
let vision_config = vision_model::ClipVisionConfig::vit_base_patch32();
Self {
text_config,
vision_config,
logit_scale_init_value: 2.6592,
image_size: 224,
}
}
}
impl ClipModel {
pub fn new(vs: candle_nn::VarBuilder, c: &ClipConfig) -> Result<Self> {
let text_model = ClipTextTransformer::new(vs.pp("text_model"), &c.text_config)?;
let vision_model = ClipVisionTransformer::new(vs.pp("vision_model"), &c.vision_config)?;
let visual_projection = candle_nn::linear_no_bias(
c.vision_config.embed_dim,
c.vision_config.projection_dim,
vs.pp("visual_projection"),
)?;
let text_projection = candle_nn::linear_no_bias(
c.text_config.embed_dim,
c.text_config.projection_dim,
vs.pp("text_projection"),
)?;
// originally nn.Parameter
let logit_scale = if vs.contains_tensor("logit_scale") {
vs.get(&[], "logit_scale")?
} else {
warn!("Creating logit_scale tensor, results may vary.");
Tensor::new(&[c.logit_scale_init_value], vs.device())?
};
Ok(Self {
text_model,
vision_model,
visual_projection,
text_projection,
logit_scale,
})
}
pub fn get_text_features(&self, input_ids: &Tensor) -> Result<Tensor> {
let text_outputs = self.text_model.forward(input_ids)?;
let text_features = self.text_projection.forward(&text_outputs)?;
Ok(text_features)
}
pub fn get_image_features(&self, pixel_values: &Tensor) -> Result<Tensor> {
let image_features = self.vision_model.forward(pixel_values)?;
let image_features = self.visual_projection.forward(&image_features)?;
Ok(image_features)
}
pub fn forward(&self, pixel_values: &Tensor, input_ids: &Tensor) -> Result<(Tensor, Tensor)> {
let image_features = self.get_image_features(pixel_values)?;
let text_features = self.get_text_features(input_ids)?;
let image_features_normalized = div_l2_norm(&image_features)?;
let text_features_normalized = div_l2_norm(&text_features)?;
let logits_per_text = text_features_normalized.matmul(&image_features_normalized.t()?)?;
let logit_scale = &self.logit_scale.exp()?;
let logits_per_text = logits_per_text.broadcast_mul(&logit_scale)?;
let logits_per_image = logits_per_text.t()?;
Ok((logits_per_text, logits_per_image))
}
}
pub fn div_l2_norm(v: &Tensor) -> Result<Tensor> {
let l2_norm = v.sqr()?.sum_keepdim(D::Minus1)?.sqrt()?;
v.broadcast_div(&l2_norm)
}

View File

@ -0,0 +1,355 @@
//! Contrastive Language-Image Pre-Training
//!
//! Contrastive Language-Image Pre-Training (CLIP) is an architecture trained on
//! pairs of images with related texts.
//!
//! https://github.com/openai/CLIP
//! https://github.com/huggingface/transformers/tree/f6fa0f0bf0796ac66f201f23bdb8585de1609add/src/transformers/models/clip
use candle::{DType, Device, IndexOp, Result, Tensor, D};
use candle_nn as nn;
use candle_nn::Module;
use super::EncoderConfig;
#[derive(Debug, Clone, Copy)]
pub enum Activation {
QuickGelu,
}
impl Module for Activation {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
match self {
Activation::QuickGelu => xs * nn::ops::sigmoid(&(xs * 1.702f64)?)?,
}
}
}
#[derive(Debug, Clone)]
pub struct ClipTextConfig {
pub vocab_size: usize,
pub embed_dim: usize,
pub activation: Activation,
pub intermediate_size: usize,
pub max_position_embeddings: usize,
pub pad_with: Option<String>,
pub num_hidden_layers: usize,
pub num_attention_heads: usize,
#[allow(dead_code)]
pub projection_dim: usize,
}
impl ClipTextConfig {
// The config details can be found in the "text_config" section of this json file:
// https://huggingface.co/openai/clip-vit-large-patch14/blob/main/config.json
pub fn vit_base_patch32() -> Self {
Self {
vocab_size: 49408,
embed_dim: 512,
intermediate_size: 2048,
max_position_embeddings: 77,
pad_with: None,
num_hidden_layers: 12,
num_attention_heads: 8,
projection_dim: 512,
activation: Activation::QuickGelu,
}
}
}
// ClipTextEmbeddings mostly based on the existing implementation in the stable diffision model.
// TODO rewrite to be more similar to https://github.com/huggingface/transformers/blob/f6fa0f0bf0796ac66f201f23bdb8585de1609add/src/transformers/models/clip/modeling_clip.py#L142
#[derive(Debug)]
struct ClipTextEmbeddings {
token_embedding: candle_nn::Embedding,
position_embedding: candle_nn::Embedding,
position_ids: Tensor,
}
impl ClipTextEmbeddings {
fn new(vs: candle_nn::VarBuilder, c: &ClipTextConfig) -> Result<Self> {
let token_embedding =
candle_nn::embedding(c.vocab_size, c.embed_dim, vs.pp("token_embedding"))?;
let position_embedding: nn::Embedding = candle_nn::embedding(
c.max_position_embeddings,
c.embed_dim,
vs.pp("position_embedding"),
)?;
let position_ids =
Tensor::arange(0u32, c.max_position_embeddings as u32, vs.device())?.unsqueeze(0)?;
Ok(ClipTextEmbeddings {
token_embedding,
position_embedding,
position_ids,
})
}
}
impl Module for ClipTextEmbeddings {
fn forward(&self, input_ids: &Tensor) -> Result<Tensor> {
let seq_length = input_ids.dim(D::Minus1)?;
let inputs_embeds = &self.token_embedding.forward(input_ids)?;
let postion_ids = &self.position_ids.narrow(1, 0, seq_length)?;
let position_embedding = &self.position_embedding.forward(&postion_ids)?;
let inputs_embeds = inputs_embeds.broadcast_add(&position_embedding)?;
Ok(inputs_embeds)
}
}
#[derive(Debug)]
struct ClipAttention {
k_proj: candle_nn::Linear,
v_proj: candle_nn::Linear,
q_proj: candle_nn::Linear,
out_proj: candle_nn::Linear,
head_dim: usize,
scale: f64,
num_attention_heads: usize,
}
impl ClipAttention {
fn new(vs: candle_nn::VarBuilder, c: &EncoderConfig) -> Result<Self> {
let embed_dim = c.embed_dim();
let num_attention_heads = c.num_attention_heads();
let k_proj = candle_nn::linear(embed_dim, embed_dim, vs.pp("k_proj"))?;
let v_proj = candle_nn::linear(embed_dim, embed_dim, vs.pp("v_proj"))?;
let q_proj = candle_nn::linear(embed_dim, embed_dim, vs.pp("q_proj"))?;
let out_proj = candle_nn::linear(embed_dim, embed_dim, vs.pp("out_proj"))?;
let head_dim = embed_dim / num_attention_heads;
let scale = (head_dim as f64).powf(-0.5);
Ok(ClipAttention {
k_proj,
v_proj,
q_proj,
out_proj,
head_dim,
scale,
num_attention_heads,
})
}
fn shape(&self, xs: &Tensor, seq_len: usize, bsz: usize) -> Result<Tensor> {
xs.reshape((bsz, seq_len, self.num_attention_heads, self.head_dim))?
.transpose(1, 2)?
.contiguous()
}
fn forward(&self, xs: &Tensor, causal_attention_mask: Option<&Tensor>) -> Result<Tensor> {
let in_dtype = xs.dtype();
let (bsz, seq_len, embed_dim) = xs.dims3()?;
let query_states = (self.q_proj.forward(xs)? * self.scale)?;
let proj_shape = (bsz * self.num_attention_heads, seq_len, self.head_dim);
let query_states = self
.shape(&query_states, seq_len, bsz)?
.reshape(proj_shape)?
.to_dtype(DType::F32)?;
let key_states = self
.shape(&self.k_proj.forward(xs)?, seq_len, bsz)?
.reshape(proj_shape)?
.to_dtype(DType::F32)?;
let value_states = self
.shape(&self.v_proj.forward(xs)?, seq_len, bsz)?
.reshape(proj_shape)?
.to_dtype(DType::F32)?;
let attn_weights = query_states.matmul(&key_states.transpose(1, 2)?)?;
let src_len = key_states.dim(1)?;
let attn_weights = if let Some(causal_attention_mask) = causal_attention_mask {
let attn_reshape =
attn_weights.reshape((bsz, self.num_attention_heads, seq_len, src_len))?;
let attn_weights = attn_reshape.broadcast_add(causal_attention_mask)?;
let attn_weights =
attn_weights.reshape((bsz * self.num_attention_heads, seq_len, src_len))?;
attn_weights
} else {
attn_weights
};
let attn_weights = candle_nn::ops::softmax(&attn_weights, D::Minus1)?;
let attn_output = attn_weights.matmul(&value_states)?.to_dtype(in_dtype)?;
let attn_output = attn_output
.reshape((bsz, self.num_attention_heads, seq_len, self.head_dim))?
.transpose(1, 2)?
.reshape((bsz, seq_len, embed_dim))?;
self.out_proj.forward(&attn_output)
}
}
#[derive(Debug)]
struct ClipMlp {
fc1: candle_nn::Linear,
fc2: candle_nn::Linear,
activation: Activation,
}
impl ClipMlp {
fn new(vs: candle_nn::VarBuilder, c: &EncoderConfig) -> Result<Self> {
let fc1 = candle_nn::linear(c.embed_dim(), c.intermediate_size(), vs.pp("fc1"))?;
let fc2 = candle_nn::linear(c.intermediate_size(), c.embed_dim(), vs.pp("fc2"))?;
Ok(ClipMlp {
fc1,
fc2,
activation: c.activation(),
})
}
}
impl ClipMlp {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.fc1.forward(xs)?;
self.fc2.forward(&self.activation.forward(&xs)?)
}
}
#[derive(Debug)]
struct ClipEncoderLayer {
self_attn: ClipAttention,
layer_norm1: candle_nn::LayerNorm,
mlp: ClipMlp,
layer_norm2: candle_nn::LayerNorm,
}
impl ClipEncoderLayer {
fn new(vs: candle_nn::VarBuilder, c: &EncoderConfig) -> Result<Self> {
let self_attn = ClipAttention::new(vs.pp("self_attn"), c)?;
let layer_norm1 = candle_nn::layer_norm(c.embed_dim(), 1e-5, vs.pp("layer_norm1"))?;
let mlp = ClipMlp::new(vs.pp("mlp"), c)?;
let layer_norm2 = candle_nn::layer_norm(c.embed_dim(), 1e-5, vs.pp("layer_norm2"))?;
Ok(ClipEncoderLayer {
self_attn,
layer_norm1,
mlp,
layer_norm2,
})
}
fn forward(&self, xs: &Tensor, causal_attention_mask: Option<&Tensor>) -> Result<Tensor> {
let residual = xs;
let xs = self.layer_norm1.forward(xs)?;
let xs = self.self_attn.forward(&xs, causal_attention_mask)?;
let xs = (xs + residual)?;
let residual = &xs;
let xs = self.layer_norm2.forward(&xs)?;
let xs = self.mlp.forward(&xs)?;
xs + residual
}
}
#[derive(Debug)]
pub struct ClipEncoder {
layers: Vec<ClipEncoderLayer>,
}
impl ClipEncoder {
pub fn new(vs: candle_nn::VarBuilder, c: &EncoderConfig) -> Result<Self> {
let vs = vs.pp("layers");
let mut layers: Vec<ClipEncoderLayer> = Vec::new();
for index in 0..c.num_hidden_layers() {
let layer = ClipEncoderLayer::new(vs.pp(&index.to_string()), c)?;
layers.push(layer)
}
Ok(ClipEncoder { layers })
}
pub fn forward(&self, xs: &Tensor, causal_attention_mask: Option<&Tensor>) -> Result<Tensor> {
let mut xs = xs.clone();
for layer in self.layers.iter() {
xs = layer.forward(&xs, causal_attention_mask)?;
}
Ok(xs)
}
}
/// A CLIP transformer based model.
#[derive(Debug)]
pub struct ClipTextTransformer {
embeddings: ClipTextEmbeddings,
encoder: ClipEncoder,
final_layer_norm: candle_nn::LayerNorm,
}
impl ClipTextTransformer {
pub fn new(vs: candle_nn::VarBuilder, c: &ClipTextConfig) -> Result<Self> {
let embeddings = ClipTextEmbeddings::new(vs.pp("embeddings"), c)?;
let encoder = ClipEncoder::new(vs.pp("encoder"), &EncoderConfig::Text(c.clone()))?;
let final_layer_norm = candle_nn::layer_norm(c.embed_dim, 1e-5, vs.pp("final_layer_norm"))?;
Ok(ClipTextTransformer {
embeddings,
encoder,
final_layer_norm,
})
}
// TODO: rewrrite to newer version
fn build_causal_attention_mask(
bsz: usize,
seq_len: usize,
mask_after: usize,
device: &Device,
) -> Result<Tensor> {
let mask: Vec<_> = (0..seq_len)
.flat_map(|i| {
(0..seq_len).map(move |j| {
if j > i || j > mask_after {
f32::MIN
} else {
0.
}
})
})
.collect();
let mask = Tensor::from_slice(&mask, (seq_len, seq_len), device)?;
mask.broadcast_as((bsz, 1, seq_len, seq_len))
}
pub fn forward_with_mask(&self, input_ids: &Tensor, mask_after: usize) -> Result<Tensor> {
let (bsz, seq_len) = input_ids.dims2()?;
let input_ids = self.embeddings.forward(input_ids)?;
let causal_attention_mask =
Self::build_causal_attention_mask(bsz, seq_len, mask_after, input_ids.device())?;
let input_ids = self
.encoder
.forward(&input_ids, Some(&causal_attention_mask))?;
self.final_layer_norm.forward(&input_ids)
}
}
impl Module for ClipTextTransformer {
fn forward(&self, input_ids: &Tensor) -> Result<Tensor> {
let output = self.forward_with_mask(input_ids, usize::MAX)?;
let sequence_max_indices = input_ids.argmax(D::Minus1)?.to_dtype(DType::I64)?;
let mut indices: Vec<Tensor> = Vec::new();
for (batch_idx, &seq_idx) in sequence_max_indices.to_vec1::<i64>()?.iter().enumerate() {
let index = output.i((batch_idx, seq_idx as usize))?.unsqueeze(0)?;
indices.push(index);
}
let pooled_output = Tensor::cat(&indices, 0)?;
Ok(pooled_output)
}
}

View File

@ -0,0 +1,171 @@
//! Contrastive Language-Image Pre-Training
//!
//! Contrastive Language-Image Pre-Training (CLIP) is an architecture trained on
//! pairs of images with related texts.
//!
//! https://github.com/openai/CLIP
//! https://github.com/huggingface/transformers/tree/f6fa0f0bf0796ac66f201f23bdb8585de1609add/src/transformers/models/clip
use candle::{IndexOp, Result, Shape, Tensor, D};
use candle_nn as nn;
use candle_nn::Module;
use nn::Conv2dConfig;
use tracing::warn;
use super::{
text_model::{Activation, ClipEncoder},
EncoderConfig,
};
#[derive(Debug, Clone)]
pub struct ClipVisionConfig {
pub embed_dim: usize,
pub activation: Activation,
pub intermediate_size: usize,
pub num_hidden_layers: usize,
pub num_attention_heads: usize,
#[allow(dead_code)]
pub projection_dim: usize,
pub num_channels: usize,
pub image_size: usize,
pub patch_size: usize,
}
impl ClipVisionConfig {
// The config details can be found in the "vision_config" section of this json file:
// https://huggingface.co/openai/clip-vit-large-patch14/blob/main/config.json
pub fn vit_base_patch32() -> Self {
Self {
embed_dim: 768,
activation: Activation::QuickGelu,
intermediate_size: 3072,
num_hidden_layers: 12,
num_attention_heads: 12,
projection_dim: 512,
num_channels: 3,
image_size: 224,
patch_size: 32,
}
}
}
// https://github.com/huggingface/transformers/blob/f6fa0f0bf0796ac66f201f23bdb8585de1609add/src/transformers/models/clip/modeling_clip.py#L112
#[derive(Debug)]
struct ClipVisionEmbeddings {
patch_embedding: candle_nn::Conv2d,
position_ids: Tensor,
class_embedding: Tensor,
position_embedding: candle_nn::Embedding,
}
impl ClipVisionEmbeddings {
fn new(vs: candle_nn::VarBuilder, c: &ClipVisionConfig) -> Result<Self> {
// originally nn.Parameter
let class_embedding = if vs.contains_tensor("class_embedding") {
vs.get(c.embed_dim, "class_embedding")?
} else {
warn!("class_embedding not found in the. Initializing a new one.");
Tensor::randn(0.0 as f32, 1.0 as f32, &[c.embed_dim], vs.device())?
};
let num_patches = (c.image_size / c.patch_size).pow(2);
let num_positions = num_patches + 1;
let position_ids = Tensor::arange(0, num_positions as i64, vs.device())?;
let conv2dconfig = Conv2dConfig {
stride: c.patch_size,
..Default::default()
};
let position_embedding =
candle_nn::embedding(num_positions, c.embed_dim, vs.pp("position_embedding"))?;
let patch_embedding = candle_nn::conv2d_no_bias(
c.num_channels,
c.embed_dim,
c.patch_size,
conv2dconfig,
vs.pp("patch_embedding"),
)?;
Ok(Self {
patch_embedding,
position_ids,
class_embedding,
position_embedding,
})
}
}
impl Module for ClipVisionEmbeddings {
fn forward(&self, pixel_values: &Tensor) -> Result<Tensor> {
let batch_size = pixel_values.shape().dims();
let patch_embeds = self.patch_embedding.forward(&pixel_values)?;
let patch_embeds = patch_embeds.flatten_from(2)?;
let patch_embeds = patch_embeds.transpose(1, 2)?;
let class_embedding = self.class_embedding.clone();
let shape = Shape::from(vec![batch_size[0], 1, class_embedding.dim(D::Minus1)?]);
let class_embeds = class_embedding.expand(shape)?;
let embeddings = Tensor::cat(&[class_embeds, patch_embeds], 1)?;
let position_embedding = self.position_embedding.forward(&self.position_ids)?;
let embeddings = embeddings.broadcast_add(&position_embedding)?;
Ok(embeddings)
}
}
// https://github.com/huggingface/transformers/blob/f6fa0f0bf0796ac66f201f23bdb8585de1609add/src/transformers/models/clip/modeling_clip.py#L743
#[derive(Debug)]
pub struct ClipVisionTransformer {
embeddings: ClipVisionEmbeddings,
encoder: ClipEncoder,
pre_layer_norm: candle_nn::LayerNorm,
final_layer_norm: candle_nn::LayerNorm,
}
impl ClipVisionTransformer {
pub fn new(vs: candle_nn::VarBuilder, c: &ClipVisionConfig) -> Result<Self> {
let embeddings = ClipVisionEmbeddings::new(vs.pp("embeddings"), c)?;
let pre_layer_norm = candle_nn::layer_norm(c.embed_dim, 1e-5, vs.pp("pre_layrnorm"))?;
let encoder = ClipEncoder::new(vs.pp("encoder"), &EncoderConfig::Vision(c.clone()))?;
let final_layer_norm = candle_nn::layer_norm(c.embed_dim, 1e-5, vs.pp("post_layernorm"))?;
Ok(Self {
embeddings,
encoder,
final_layer_norm,
pre_layer_norm,
})
}
}
impl Module for ClipVisionTransformer {
fn forward(&self, pixel_values: &Tensor) -> Result<Tensor> {
let hidden_states = self.embeddings.forward(pixel_values)?;
let hidden_states = self.pre_layer_norm.forward(&hidden_states)?;
let encoder_outputs = self.encoder.forward(&hidden_states, None)?;
// https://github.com/huggingface/transformers/blob/f6fa0f0bf0796ac66f201f23bdb8585de1609add/src/transformers/models/clip/modeling_clip.py#L787
// pooled_output = encoder_outputs[:, 0, :]
let pooled_output = encoder_outputs.i((.., 0, ..))?;
let output = self.final_layer_norm.forward(&pooled_output)?;
Ok(output)
}
}

View File

@ -12,6 +12,7 @@ pub mod efficientvit;
pub mod encodec;
pub mod falcon;
pub mod gemma;
pub mod clip;
pub mod jina_bert;
pub mod llama;
pub mod llama2_c;