mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
Start sketching the whisper model.
This commit is contained in:
281
candle-examples/examples/whisper/main.rs
Normal file
281
candle-examples/examples/whisper/main.rs
Normal file
@ -0,0 +1,281 @@
|
|||||||
|
#![allow(dead_code)]
|
||||||
|
// https://github.com/openai/whisper/blob/main/whisper/model.py
|
||||||
|
|
||||||
|
use anyhow::{Error as E, Result};
|
||||||
|
use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor};
|
||||||
|
use clap::Parser;
|
||||||
|
use std::collections::HashMap;
|
||||||
|
|
||||||
|
const DTYPE: DType = DType::F32;
|
||||||
|
|
||||||
|
struct VarBuilder<'a> {
|
||||||
|
safetensors: Option<(HashMap<String, usize>, Vec<SafeTensors<'a>>)>,
|
||||||
|
dtype: DType,
|
||||||
|
device: Device,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a> VarBuilder<'a> {
|
||||||
|
pub fn from_safetensors(
|
||||||
|
safetensors: Vec<SafeTensors<'a>>,
|
||||||
|
dtype: DType,
|
||||||
|
device: Device,
|
||||||
|
) -> Self {
|
||||||
|
let mut routing = HashMap::new();
|
||||||
|
for (index, sf) in safetensors.iter().enumerate() {
|
||||||
|
for k in sf.names() {
|
||||||
|
routing.insert(k.to_string(), index);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Self {
|
||||||
|
safetensors: Some((routing, safetensors)),
|
||||||
|
device,
|
||||||
|
dtype,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn zeros(dtype: DType, device: Device) -> Self {
|
||||||
|
Self {
|
||||||
|
safetensors: None,
|
||||||
|
device,
|
||||||
|
dtype,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn get<S: Into<Shape>>(&self, s: S, tensor_name: &str) -> candle::Result<Tensor> {
|
||||||
|
let s: Shape = s.into();
|
||||||
|
match &self.safetensors {
|
||||||
|
None => Tensor::zeros(s, self.dtype, &self.device),
|
||||||
|
Some((routing, safetensors)) => {
|
||||||
|
// Unwrap or 0 just to let the proper error flow.
|
||||||
|
let index = routing.get(tensor_name).unwrap_or(&0);
|
||||||
|
let tensor = safetensors[*index]
|
||||||
|
.tensor(tensor_name, &self.device)?
|
||||||
|
.to_dtype(self.dtype)?;
|
||||||
|
if *tensor.shape() != s {
|
||||||
|
let msg = format!("shape mismatch for {tensor_name}");
|
||||||
|
Err(candle::Error::UnexpectedShape {
|
||||||
|
msg,
|
||||||
|
expected: s,
|
||||||
|
got: tensor.shape().clone(),
|
||||||
|
})?
|
||||||
|
}
|
||||||
|
Ok(tensor)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||||
|
enum HiddenAct {
|
||||||
|
Gelu,
|
||||||
|
Relu,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl HiddenAct {
|
||||||
|
fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> {
|
||||||
|
match self {
|
||||||
|
Self::Gelu => xs.gelu(),
|
||||||
|
Self::Relu => xs.relu(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, PartialEq)]
|
||||||
|
struct Config {
|
||||||
|
n_mels: usize,
|
||||||
|
n_audio_ctx: usize,
|
||||||
|
n_audio_state: usize,
|
||||||
|
n_audio_head: usize,
|
||||||
|
n_audio_layer: usize,
|
||||||
|
n_vocab: usize,
|
||||||
|
n_text_ctx: usize,
|
||||||
|
n_text_state: usize,
|
||||||
|
n_text_head: usize,
|
||||||
|
n_text_layer: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
struct Embedding {
|
||||||
|
embeddings: Tensor,
|
||||||
|
hidden_size: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Embedding {
|
||||||
|
fn new(embeddings: Tensor, hidden_size: usize) -> Self {
|
||||||
|
Self {
|
||||||
|
embeddings,
|
||||||
|
hidden_size,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn load(vocab_size: usize, hidden_size: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
|
||||||
|
let embeddings = vb.get((vocab_size, hidden_size), &format!("{p}.weight"))?;
|
||||||
|
Ok(Self::new(embeddings, hidden_size))
|
||||||
|
}
|
||||||
|
|
||||||
|
fn forward(&self, indexes: &Tensor) -> Result<Tensor> {
|
||||||
|
let mut final_dims = indexes.dims().to_vec();
|
||||||
|
final_dims.push(self.hidden_size);
|
||||||
|
let indexes = indexes.flatten_all()?;
|
||||||
|
let values = Tensor::embedding(&indexes, &self.embeddings)?;
|
||||||
|
let values = values.reshape(final_dims)?;
|
||||||
|
Ok(values)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
struct Linear {
|
||||||
|
weight: Tensor,
|
||||||
|
bias: Option<Tensor>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Linear {
|
||||||
|
fn load(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
|
||||||
|
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
|
||||||
|
let bias = vb.get(size2, &format!("{p}.bias"))?;
|
||||||
|
Ok(Self {
|
||||||
|
weight,
|
||||||
|
bias: Some(bias),
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
fn load_no_bias(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
|
||||||
|
let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
|
||||||
|
Ok(Self { weight, bias: None })
|
||||||
|
}
|
||||||
|
|
||||||
|
fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
|
||||||
|
let (bsize, _, _) = x.shape().r3()?;
|
||||||
|
let w = self.weight.broadcast_left(bsize)?.t()?;
|
||||||
|
let x = x.matmul(&w)?;
|
||||||
|
match &self.bias {
|
||||||
|
None => Ok(x),
|
||||||
|
Some(bias) => x.broadcast_add(bias),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
struct Dropout {
|
||||||
|
pr: f64,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Dropout {
|
||||||
|
fn new(pr: f64) -> Self {
|
||||||
|
Self { pr }
|
||||||
|
}
|
||||||
|
|
||||||
|
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||||
|
// TODO
|
||||||
|
Ok(x.clone())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// This layer norm version handles both weight and bias so removes the mean.
|
||||||
|
struct LayerNorm {
|
||||||
|
weight: Tensor,
|
||||||
|
bias: Tensor,
|
||||||
|
eps: f64,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl LayerNorm {
|
||||||
|
fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self {
|
||||||
|
Self { weight, bias, eps }
|
||||||
|
}
|
||||||
|
|
||||||
|
fn load(size: usize, eps: f64, p: &str, vb: &VarBuilder) -> Result<Self> {
|
||||||
|
let weight = vb.get(size, &format!("{p}.weight"))?;
|
||||||
|
let bias = vb.get(size, &format!("{p}.bias"))?;
|
||||||
|
Ok(Self::new(weight, bias, eps))
|
||||||
|
}
|
||||||
|
|
||||||
|
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||||
|
let (_bsize, _seq_len, hidden_size) = x.shape().r3()?;
|
||||||
|
let mean_x = (x.sum(&[2])? / hidden_size as f64)?;
|
||||||
|
let x = x.broadcast_sub(&mean_x)?;
|
||||||
|
let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?;
|
||||||
|
let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
|
||||||
|
let x = x_normed
|
||||||
|
.broadcast_mul(&self.weight)?
|
||||||
|
.broadcast_add(&self.bias)?;
|
||||||
|
Ok(x)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62
|
||||||
|
struct MultiHeadAttention {
|
||||||
|
query: Linear,
|
||||||
|
key: Linear,
|
||||||
|
value: Linear,
|
||||||
|
out: Linear,
|
||||||
|
n_head: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl MultiHeadAttention {
|
||||||
|
fn load(n_head: usize, n: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
|
||||||
|
let query = Linear::load(n, n, &format!("{p}.query"), vb)?;
|
||||||
|
let value = Linear::load_no_bias(n, n, &format!("{p}.value"), vb)?;
|
||||||
|
let key = Linear::load(n, n, &format!("{p}.key"), vb)?;
|
||||||
|
let out = Linear::load(n, n, &format!("{p}.out"), vb)?;
|
||||||
|
Ok(Self {
|
||||||
|
query,
|
||||||
|
key,
|
||||||
|
value,
|
||||||
|
out,
|
||||||
|
n_head,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
fn forward(&self, x: &Tensor) -> Result<(Tensor, Tensor)> {
|
||||||
|
let q = self.query.forward(x)?;
|
||||||
|
let k = self.key.forward(x)?;
|
||||||
|
let v = self.value.forward(x)?;
|
||||||
|
let (wv, qk) = self.qkv_attention(&q, &k, &v)?;
|
||||||
|
let out = self.out.forward(&wv)?;
|
||||||
|
Ok((out, qk))
|
||||||
|
}
|
||||||
|
|
||||||
|
fn qkv_attention(&self, q: &Tensor, k: &Tensor, v: &Tensor) -> Result<(Tensor, Tensor)> {
|
||||||
|
let (n_batch, n_ctx, n_state) = q.shape().r3()?;
|
||||||
|
let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head];
|
||||||
|
let scale = ((n_state / self.n_head) as f64).powf(-0.25);
|
||||||
|
let q = (q.reshape(target_dims)?.transpose(1, 2)? * scale)?;
|
||||||
|
let k = (k.reshape(target_dims)?.transpose(1, 2)?.transpose(2, 3)? * scale)?;
|
||||||
|
let v = v.reshape(target_dims)?.transpose(1, 2)?;
|
||||||
|
let qk = q.matmul(&k)?;
|
||||||
|
let w = qk.softmax(qk.rank() - 1)?;
|
||||||
|
let wv = w.matmul(&v)?.transpose(1, 2)?.flatten(Some(2), None)?;
|
||||||
|
let qk = qk.detach()?;
|
||||||
|
Ok((wv, qk))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Parser, Debug)]
|
||||||
|
#[command(author, version, about, long_about = None)]
|
||||||
|
struct Args {
|
||||||
|
/// Run on CPU rather than on GPU.
|
||||||
|
#[arg(long)]
|
||||||
|
cpu: bool,
|
||||||
|
|
||||||
|
#[arg(long)]
|
||||||
|
tokenizer_config: String,
|
||||||
|
|
||||||
|
#[arg(long)]
|
||||||
|
weights: String,
|
||||||
|
}
|
||||||
|
|
||||||
|
fn main() -> Result<()> {
|
||||||
|
use tokenizers::Tokenizer;
|
||||||
|
|
||||||
|
let args = Args::parse();
|
||||||
|
let device = if args.cpu {
|
||||||
|
Device::Cpu
|
||||||
|
} else {
|
||||||
|
Device::new_cuda(0)?
|
||||||
|
};
|
||||||
|
|
||||||
|
let mut tokenizer = Tokenizer::from_file(args.tokenizer_config).map_err(E::msg)?;
|
||||||
|
let _tokenizer = tokenizer.with_padding(None).with_truncation(None);
|
||||||
|
|
||||||
|
let weights = unsafe { candle::safetensors::MmapedFile::new(args.weights)? };
|
||||||
|
let weights = weights.deserialize()?;
|
||||||
|
let _vb = VarBuilder::from_safetensors(vec![weights], DTYPE, device);
|
||||||
|
Ok(())
|
||||||
|
}
|
Reference in New Issue
Block a user