mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
Reduce the number of threads.
This commit is contained in:
@ -1050,11 +1050,11 @@ impl<'a> Map2 for ConvTranspose2D<'a> {
|
|||||||
k_l: &Layout,
|
k_l: &Layout,
|
||||||
dev: &CudaDevice,
|
dev: &CudaDevice,
|
||||||
) -> Result<CudaSlice<T>> {
|
) -> Result<CudaSlice<T>> {
|
||||||
// Kernel shape: (c_in_k, c_out, h_k, w_k)
|
// Kernel shape: (c_in_k, c_out / groups, h_k, w_k)
|
||||||
// Input shape: (b_size, c_in, h_in, w_in)
|
// Input shape: (b_size, c_in, h_in, w_in)
|
||||||
let p = &self.0;
|
let p = &self.0;
|
||||||
let (out_w, out_h) = (p.out_w(), p.out_h());
|
let (out_w, out_h) = (p.out_w(), p.out_h());
|
||||||
let dst_el = p.c_out * out_w * out_h * p.b_size;
|
let dst_el = p.c_out_per_group * p.groups * out_w * out_h * p.b_size;
|
||||||
let inp = &inp.slice(inp_l.start_offset()..);
|
let inp = &inp.slice(inp_l.start_offset()..);
|
||||||
let k = &k.slice(k_l.start_offset()..);
|
let k = &k.slice(k_l.start_offset()..);
|
||||||
let shape = inp_l.shape();
|
let shape = inp_l.shape();
|
||||||
@ -1063,7 +1063,13 @@ impl<'a> Map2 for ConvTranspose2D<'a> {
|
|||||||
|
|
||||||
// SAFETY: Set later by running the kernel.
|
// SAFETY: Set later by running the kernel.
|
||||||
let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
|
let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
|
||||||
let cfg = LaunchConfig::for_num_elems(dst_el as u32);
|
const NUM_THREADS: u32 = 512;
|
||||||
|
let num_blocks = (dst_el as u32 + NUM_THREADS - 1) / NUM_THREADS;
|
||||||
|
let mut cfg = LaunchConfig {
|
||||||
|
grid_dim: (num_blocks, 1, 1),
|
||||||
|
block_dim: (NUM_THREADS, 1, 1),
|
||||||
|
shared_mem_bytes: 0,
|
||||||
|
};
|
||||||
let func = dev.get_or_load_func(&kernel_name::<T>("conv_transpose2d"), kernels::CONV)?;
|
let func = dev.get_or_load_func(&kernel_name::<T>("conv_transpose2d"), kernels::CONV)?;
|
||||||
let ds = if dims.len() == 4 {
|
let ds = if dims.len() == 4 {
|
||||||
[dims, inp_l.stride(), k_l.dims(), k_l.stride()].concat()
|
[dims, inp_l.stride(), k_l.dims(), k_l.stride()].concat()
|
||||||
@ -1072,13 +1078,13 @@ impl<'a> Map2 for ConvTranspose2D<'a> {
|
|||||||
};
|
};
|
||||||
let ds = dev.htod_copy(ds).w()?;
|
let ds = dev.htod_copy(ds).w()?;
|
||||||
let params = (
|
let params = (
|
||||||
el,
|
|
||||||
out_w,
|
out_w,
|
||||||
out_h,
|
out_h,
|
||||||
p.stride,
|
p.stride,
|
||||||
p.padding,
|
p.padding,
|
||||||
p.output_padding,
|
p.output_padding,
|
||||||
p.dilation,
|
p.dilation,
|
||||||
|
p.groups,
|
||||||
&ds,
|
&ds,
|
||||||
inp,
|
inp,
|
||||||
k,
|
k,
|
||||||
|
@ -116,13 +116,13 @@ __device__ void conv2d(
|
|||||||
// Naive implementation of conv_transpose2d.
|
// Naive implementation of conv_transpose2d.
|
||||||
template <typename T, typename A>
|
template <typename T, typename A>
|
||||||
__device__ void conv_transpose2d(
|
__device__ void conv_transpose2d(
|
||||||
const size_t src_numel,
|
|
||||||
const size_t w_out,
|
const size_t w_out,
|
||||||
const size_t h_out,
|
const size_t h_out,
|
||||||
const size_t stride,
|
const size_t stride,
|
||||||
const size_t padding,
|
const size_t padding,
|
||||||
const size_t out_padding,
|
const size_t out_padding,
|
||||||
const size_t dilation,
|
const size_t dilation,
|
||||||
|
const size_t groups,
|
||||||
const size_t *info,
|
const size_t *info,
|
||||||
const T *src,
|
const T *src,
|
||||||
const T *kernel,
|
const T *kernel,
|
||||||
@ -130,17 +130,18 @@ __device__ void conv_transpose2d(
|
|||||||
) {
|
) {
|
||||||
const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x;
|
const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||||
// src: (b_size, c_in, h_in, w_in)
|
// src: (b_size, c_in, h_in, w_in)
|
||||||
// k: (c_in, c_out, h_k, w_k)
|
// k: (c_in, c_out / groups, h_k, w_k)
|
||||||
const size_t *src_dims = info;
|
const size_t *src_dims = info;
|
||||||
const size_t *src_s = info + 4;
|
const size_t *src_s = info + 4;
|
||||||
const size_t *k_dims = info + 8;
|
const size_t *k_dims = info + 8;
|
||||||
const size_t *k_s = info + 12;
|
const size_t *k_s = info + 12;
|
||||||
const size_t h_k = k_dims[2];
|
const size_t h_k = k_dims[2];
|
||||||
const size_t w_k = k_dims[3];
|
const size_t w_k = k_dims[3];
|
||||||
const size_t c_out = k_dims[1];
|
const size_t c_out_per_group = k_dims[1];
|
||||||
const size_t c_in = src_dims[1];
|
const size_t c_in = src_dims[1];
|
||||||
const size_t h_in = src_dims[2];
|
const size_t h_in = src_dims[2];
|
||||||
const size_t w_in = src_dims[3];
|
const size_t w_in = src_dims[3];
|
||||||
|
const size_t c_out = c_out_per_group * groups;
|
||||||
if (dst_i >= src_dims[0] * c_out * w_out * h_out) {
|
if (dst_i >= src_dims[0] * c_out * w_out * h_out) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
@ -148,6 +149,10 @@ __device__ void conv_transpose2d(
|
|||||||
// TODO
|
// TODO
|
||||||
const size_t b_idx = dst_i / (w_out * h_out * c_out);
|
const size_t b_idx = dst_i / (w_out * h_out * c_out);
|
||||||
const size_t dst_c_idx = (dst_i / (w_out * h_out)) % c_out;
|
const size_t dst_c_idx = (dst_i / (w_out * h_out)) % c_out;
|
||||||
|
const size_t c_idx_in_group = dst_c_idx % c_out_per_group;
|
||||||
|
const size_t c_in_per_group = c_in / groups;
|
||||||
|
const size_t group_idx = dst_c_idx / c_out_per_group;
|
||||||
|
// const size_t c_in_per_group = c_in;
|
||||||
// NCHW layout.
|
// NCHW layout.
|
||||||
const size_t out_y = (dst_i / w_out) % h_out;
|
const size_t out_y = (dst_i / w_out) % h_out;
|
||||||
const size_t out_x = dst_i % w_out;
|
const size_t out_x = dst_i % w_out;
|
||||||
@ -169,9 +174,9 @@ __device__ void conv_transpose2d(
|
|||||||
}
|
}
|
||||||
int inp_y = inp_y_stride / stride;
|
int inp_y = inp_y_stride / stride;
|
||||||
if (inp_y >= h_in) continue;
|
if (inp_y >= h_in) continue;
|
||||||
for (size_t src_c_idx = 0; src_c_idx < c_in; ++src_c_idx) {
|
for (size_t src_c_idx = group_idx * c_in_per_group; src_c_idx < (group_idx + 1) * c_in_per_group; ++src_c_idx) {
|
||||||
const size_t src_idx = src_idx0 + src_c_idx * src_s[1] + inp_y * src_s[2] + inp_x * src_s[3];
|
const size_t src_idx = src_idx0 + src_c_idx * src_s[1] + inp_y * src_s[2] + inp_x * src_s[3];
|
||||||
const size_t k_idx = src_c_idx * k_s[0] + dst_c_idx * k_s[1] + k_y * k_s[2] + k_x * k_s[3];
|
const size_t k_idx = src_c_idx * k_s[0] + c_idx_in_group * k_s[1] + k_y * k_s[2] + k_x * k_s[3];
|
||||||
d += static_cast<A>(src[src_idx]) * static_cast<A>(kernel[k_idx]);
|
d += static_cast<A>(src[src_idx]) * static_cast<A>(kernel[k_idx]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -365,19 +370,19 @@ extern "C" __global__ void FN_NAME( \
|
|||||||
|
|
||||||
#define CONVT2D_OP(TYPENAME, TYPEACC, FN_NAME) \
|
#define CONVT2D_OP(TYPENAME, TYPEACC, FN_NAME) \
|
||||||
extern "C" __global__ void FN_NAME( \
|
extern "C" __global__ void FN_NAME( \
|
||||||
const size_t src_numel, \
|
|
||||||
const size_t w_out, \
|
const size_t w_out, \
|
||||||
const size_t h_out, \
|
const size_t h_out, \
|
||||||
const size_t stride, \
|
const size_t stride, \
|
||||||
const size_t padding, \
|
const size_t padding, \
|
||||||
const size_t out_padding, \
|
const size_t out_padding, \
|
||||||
const size_t dilation, \
|
const size_t dilation, \
|
||||||
|
const size_t groups, \
|
||||||
const size_t *info, \
|
const size_t *info, \
|
||||||
const TYPENAME *src, \
|
const TYPENAME *src, \
|
||||||
const TYPENAME *kernel, \
|
const TYPENAME *kernel, \
|
||||||
TYPENAME *dst \
|
TYPENAME *dst \
|
||||||
) { \
|
) { \
|
||||||
conv_transpose2d<TYPENAME, TYPEACC>(src_numel, w_out, h_out, stride, padding, out_padding, dilation, info, src, kernel, dst); \
|
conv_transpose2d<TYPENAME, TYPEACC>(w_out, h_out, stride, padding, out_padding, dilation, groups, info, src, kernel, dst); \
|
||||||
} \
|
} \
|
||||||
|
|
||||||
#define AVG_POOL2D_OP(TYPENAME, TYPEACC, FN_NAME) \
|
#define AVG_POOL2D_OP(TYPENAME, TYPEACC, FN_NAME) \
|
||||||
|
Reference in New Issue
Block a user