Always broadcast magic methods (#1101)

This commit is contained in:
Lukas Kreussel
2023-10-17 11:57:12 +02:00
committed by GitHub
parent 2fe24ac5b1
commit b355ab4e2e
2 changed files with 77 additions and 4 deletions

View File

@ -536,7 +536,7 @@ impl PyTensor {
/// &RETURNS&: Tensor
fn __add__(&self, rhs: &PyAny) -> PyResult<Self> {
let tensor = if let Ok(rhs) = rhs.extract::<Self>() {
(&self.0 + &rhs.0).map_err(wrap_err)?
self.0.broadcast_add(&rhs.0).map_err(wrap_err)?
} else if let Ok(rhs) = rhs.extract::<f64>() {
(&self.0 + rhs).map_err(wrap_err)?
} else {
@ -553,7 +553,7 @@ impl PyTensor {
/// &RETURNS&: Tensor
fn __mul__(&self, rhs: &PyAny) -> PyResult<Self> {
let tensor = if let Ok(rhs) = rhs.extract::<Self>() {
(&self.0 * &rhs.0).map_err(wrap_err)?
self.0.broadcast_mul(&rhs.0).map_err(wrap_err)?
} else if let Ok(rhs) = rhs.extract::<f64>() {
(&self.0 * rhs).map_err(wrap_err)?
} else {
@ -570,7 +570,7 @@ impl PyTensor {
/// &RETURNS&: Tensor
fn __sub__(&self, rhs: &PyAny) -> PyResult<Self> {
let tensor = if let Ok(rhs) = rhs.extract::<Self>() {
(&self.0 - &rhs.0).map_err(wrap_err)?
self.0.broadcast_sub(&rhs.0).map_err(wrap_err)?
} else if let Ok(rhs) = rhs.extract::<f64>() {
(&self.0 - rhs).map_err(wrap_err)?
} else {
@ -583,7 +583,7 @@ impl PyTensor {
/// &RETURNS&: Tensor
fn __truediv__(&self, rhs: &PyAny) -> PyResult<Self> {
let tensor = if let Ok(rhs) = rhs.extract::<Self>() {
(&self.0 / &rhs.0).map_err(wrap_err)?
self.0.broadcast_div(&rhs.0).map_err(wrap_err)?
} else if let Ok(rhs) = rhs.extract::<f64>() {
(&self.0 / rhs).map_err(wrap_err)?
} else {

View File

@ -1,5 +1,6 @@
import candle
from candle import Tensor
import pytest
def test_tensor_can_be_constructed():
@ -72,3 +73,75 @@ def test_tensor_can_be_scliced_3d():
assert t[:, 0, 0].values() == [1, 9]
assert t[..., 0].values() == [[1, 5], [9, 13]]
assert t[..., 0:2].values() == [[[1, 2], [5, 6]], [[9, 10], [13, 14]]]
def test_tensor_can_be_added():
t = Tensor(42.0)
result = t + t
assert result.values() == 84.0
result = t + 2.0
assert result.values() == 44.0
a = candle.rand((3, 1, 4))
b = candle.rand((2, 1))
c_native = a.broadcast_add(b)
c = a + b
assert c.shape == (3, 2, 4)
assert c.values() == c_native.values()
with pytest.raises(ValueError):
d = candle.rand((3, 4, 5))
e = candle.rand((4, 6))
f = d + e
def test_tensor_can_be_subtracted():
t = Tensor(42.0)
result = t - t
assert result.values() == 0
result = t - 2.0
assert result.values() == 40.0
a = candle.rand((3, 1, 4))
b = candle.rand((2, 1))
c_native = a.broadcast_sub(b)
c = a - b
assert c.shape == (3, 2, 4)
assert c.values() == c_native.values()
with pytest.raises(ValueError):
d = candle.rand((3, 4, 5))
e = candle.rand((4, 6))
f = d - e
def test_tensor_can_be_multiplied():
t = Tensor(42.0)
result = t * t
assert result.values() == 1764.0
result = t * 2.0
assert result.values() == 84.0
a = candle.rand((3, 1, 4))
b = candle.rand((2, 1))
c_native = a.broadcast_mul(b)
c = a * b
assert c.shape == (3, 2, 4)
assert c.values() == c_native.values()
with pytest.raises(ValueError):
d = candle.rand((3, 4, 5))
e = candle.rand((4, 6))
f = d * e
def test_tensor_can_be_divided():
t = Tensor(42.0)
result = t / t
assert result.values() == 1.0
result = t / 2.0
assert result.values() == 21.0
a = candle.rand((3, 1, 4))
b = candle.rand((2, 1))
c_native = a.broadcast_div(b)
c = a / b
assert c.shape == (3, 2, 4)
assert c.values() == c_native.values()
with pytest.raises(ValueError):
d = candle.rand((3, 4, 5))
e = candle.rand((4, 6))
f = d / e