Tracing for the phi model (#936)

* Add some tracing bits to mixformers.

* Add the missing file.

* Add the conv2d layer to with-tracing.

* Improve the tracing usage.
This commit is contained in:
Laurent Mazare
2023-09-23 09:19:34 +01:00
committed by GitHub
parent cda1786eed
commit b54acfa3d0
9 changed files with 140 additions and 100 deletions

View File

@ -1,3 +1,4 @@
use crate::models::with_tracing::{linear, Embedding as E, Linear};
/// MixFormer model.
/// https://huggingface.co/microsoft/phi-1_5
/// https://arxiv.org/abs/2309.05463
@ -58,12 +59,12 @@ impl Config {
#[derive(Debug)]
struct Embedding {
wte: candle_nn::Embedding,
wte: E,
}
impl Embedding {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let wte = candle_nn::embedding(cfg.vocab_size, cfg.n_embd, vb.pp("wte"))?;
let wte = E::new(cfg.vocab_size, cfg.n_embd, vb.pp("wte"))?;
Ok(Self { wte })
}
}
@ -143,16 +144,16 @@ impl RotaryEmbedding {
#[derive(Debug)]
#[allow(clippy::upper_case_acronyms)]
struct MLP {
fc1: candle_nn::Linear,
fc2: candle_nn::Linear,
fc1: Linear,
fc2: Linear,
act: Activation,
}
impl MLP {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let n_inner = cfg.n_inner.unwrap_or(4 * cfg.n_embd);
let fc1 = candle_nn::linear(cfg.n_embd, n_inner, vb.pp("fc1"))?;
let fc2 = candle_nn::linear(n_inner, cfg.n_embd, vb.pp("fc2"))?;
let fc1 = linear(cfg.n_embd, n_inner, vb.pp("fc1"))?;
let fc2 = linear(n_inner, cfg.n_embd, vb.pp("fc2"))?;
Ok(Self {
fc1,
fc2,
@ -170,13 +171,13 @@ impl Module for MLP {
#[derive(Debug)]
struct CausalLMHead {
ln: candle_nn::LayerNorm,
linear: candle_nn::Linear,
linear: Linear,
}
impl CausalLMHead {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let ln = candle_nn::layer_norm(cfg.n_embd, cfg.layer_norm_epsilon, vb.pp("ln"))?;
let linear = candle_nn::linear(cfg.n_embd, cfg.vocab_size, vb.pp("linear"))?;
let linear = linear(cfg.n_embd, cfg.vocab_size, vb.pp("linear"))?;
Ok(Self { ln, linear })
}
}
@ -192,20 +193,21 @@ impl Module for CausalLMHead {
#[derive(Debug)]
#[allow(clippy::upper_case_acronyms)]
struct MHA {
wqkv: candle_nn::Linear,
out_proj: candle_nn::Linear,
wqkv: Linear,
out_proj: Linear,
rotary_emb: RotaryEmbedding,
kv_cache: Option<(Tensor, Tensor)>,
head_dim: usize,
softmax_scale: f64,
span: tracing::Span,
}
impl MHA {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let head_dim = cfg.n_embd / cfg.n_head;
let op_size = cfg.n_embd;
let wqkv = candle_nn::linear(cfg.n_embd, 3 * op_size, vb.pp("Wqkv"))?;
let out_proj = candle_nn::linear(op_size, cfg.n_embd, vb.pp("out_proj"))?;
let wqkv = linear(cfg.n_embd, 3 * op_size, vb.pp("Wqkv"))?;
let out_proj = linear(op_size, cfg.n_embd, vb.pp("out_proj"))?;
let rotary_emb = RotaryEmbedding::new(cfg.rotary_dim, MAX_SEQ_LEN, vb.device())?;
let softmax_scale = 1f64 / (head_dim as f64).sqrt();
Ok(Self {
@ -215,10 +217,12 @@ impl MHA {
kv_cache: None,
rotary_emb,
softmax_scale,
span: tracing::span!(tracing::Level::TRACE, "mha"),
})
}
fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
let (b_size, seq_len, _n_embd) = xs.dims3()?;
let qkv = self
.wqkv
@ -267,6 +271,7 @@ struct ParallelBlock {
ln: candle_nn::LayerNorm,
mixer: MHA,
mlp: MLP,
span: tracing::Span,
}
impl ParallelBlock {
@ -274,10 +279,16 @@ impl ParallelBlock {
let ln = candle_nn::layer_norm(cfg.n_embd, cfg.layer_norm_epsilon, vb.pp("ln"))?;
let mixer = MHA::new(cfg, vb.pp("mixer"))?;
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
Ok(Self { ln, mixer, mlp })
Ok(Self {
ln,
mixer,
mlp,
span: tracing::span!(tracing::Level::TRACE, "block"),
})
}
fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
let residual = xs;
let xs = xs.apply(&self.ln)?;
let attn_outputs = self.mixer.forward(&xs)?;
@ -291,6 +302,7 @@ pub struct MixFormerSequentialForCausalLM {
embedding: Embedding,
blocks: Vec<ParallelBlock>,
head: CausalLMHead,
span: tracing::Span,
}
impl MixFormerSequentialForCausalLM {
@ -307,10 +319,12 @@ impl MixFormerSequentialForCausalLM {
embedding,
blocks,
head,
span: tracing::span!(tracing::Level::TRACE, "mixformer"),
})
}
pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
let (_b_size, seq_len) = xs.dims2()?;
let mut xs = xs.apply(&self.embedding)?;
for block in self.blocks.iter_mut() {