Use the hub to retrieve dinov2 model weights. (#507)

This commit is contained in:
Laurent Mazare
2023-08-18 18:27:31 +01:00
committed by GitHub
parent e5dd5fd1b3
commit b64e782c2d
2 changed files with 16 additions and 3 deletions

View File

@ -28,7 +28,10 @@ Check out our [examples](./candle-examples/examples/):
- [StarCoder](./candle-examples/examples/bigcode/): LLM specialized to code
generation.
- [Stable Diffusion](./candle-examples/examples/stable-diffusion/): text to
image generative model, yet to be optimized.
image generative model.
- [DINOv2](./candle-examples/examples/dinov2/): computer vision model trained
using self-supervision (can be used for imagenet classification, depth
evaluation, segmentation).
Run them using the following commands:
```
@ -38,6 +41,7 @@ cargo run --example falcon --release
cargo run --example bert --release
cargo run --example bigcode --release
cargo run --example stable-diffusion --release -- --prompt "a rusty robot holding a fire torch"
cargo run --example dinov2 --release -- --image path/to/myinput.jpg
```
In order to use **CUDA** add `--features cuda` to the example command line. If
@ -75,6 +79,7 @@ And then head over to
- LLMs: Llama v1 and v2, Falcon, StarCoder.
- Whisper (multi-lingual support).
- Stable Diffusion.
- Computer Vision: DINOv2.
- Serverless (on CPU), small and fast deployments.
- Quantization support using the llama.cpp quantized types.