Kernel build example (#224)

* Build example kernels.

* Add some sample custom kernel.

* Get the example kernel to compile.

* Add some cuda code.

* More cuda custom op.

* More cuda custom ops.
This commit is contained in:
Laurent Mazare
2023-07-23 08:15:37 +02:00
committed by GitHub
parent 5f20acf080
commit b8a10425ad
7 changed files with 427 additions and 0 deletions

View File

@ -0,0 +1 @@
pub const LAYERNORM_KERNELS: &str = include_str!(concat!(env!("OUT_DIR"), "/examples/custom-ops/kernels//layernorm_kernels.ptx"));

View File

@ -0,0 +1,37 @@
#include "reduction_utils.cuh"
template <typename scalar_t>
__device__ void
rms_norm_kernel(scalar_t *__restrict__ out, // [num_tokens, hidden_size]
const scalar_t *__restrict__ input, // [num_tokens, hidden_size]
const scalar_t *__restrict__ weight, // [hidden_size]
const float epsilon, const int num_tokens,
const int hidden_size) {
__shared__ float s_variance;
float variance = 0.0f;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
const float x = (float)input[blockIdx.x * hidden_size + idx];
variance += x * x;
}
variance = blockReduceSum<float>(variance);
if (threadIdx.x == 0) {
s_variance = rsqrtf(variance / hidden_size + epsilon);
}
__syncthreads();
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
float x = (float)input[blockIdx.x * hidden_size + idx];
out[blockIdx.x * hidden_size + idx] =
((scalar_t)(x * s_variance)) * weight[idx];
}
}
extern "C" __global__ void rms_norm_kernel_f32(
float *__restrict__ out, // [num_tokens, hidden_size]
const float *__restrict__ input, // [num_tokens, hidden_size]
const float *__restrict__ weight, // [hidden_size]
const float epsilon, const int num_tokens,
const int hidden_size) {
rms_norm_kernel(out, input, weight, epsilon, num_tokens, hidden_size);
}

View File

@ -0,0 +1,46 @@
/*
* Adapted from
* https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/reduce_kernel_utils.cuh
* Copyright (c) 2023, The vLLM team.
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
template <typename T> __inline__ __device__ T warpReduceSum(T val) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1)
val += __shfl_xor_sync(0xffffffff, val, mask, 32);
return val;
}
/* Calculate the sum of all elements in a block */
template <typename T> __inline__ __device__ T blockReduceSum(T val) {
static __shared__ T shared[32];
int lane = threadIdx.x & 0x1f;
int wid = threadIdx.x >> 5;
val = warpReduceSum<T>(val);
if (lane == 0)
shared[wid] = val;
__syncthreads();
// Modify from blockDim.x << 5 to blockDim.x / 32. to prevent
// blockDim.x is not divided by 32
val = (threadIdx.x < (blockDim.x / 32.f)) ? shared[lane] : (T)(0.0f);
val = warpReduceSum<T>(val);
return val;
}

View File

@ -0,0 +1,65 @@
#![allow(dead_code)]
#![allow(unused)]
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
use clap::Parser;
use candle::backend::BackendStorage;
use candle::cpu_backend;
use candle::{CpuStorage, CustomOp1, DType, Device, Error, Layout, Result, Shape, Tensor};
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
}
struct LayerNorm;
impl CustomOp1 for LayerNorm {
fn name(&self) -> &'static str {
"layer-norm"
}
fn cpu_fwd(&self, s: &CpuStorage, l: &Layout) -> Result<(CpuStorage, Shape)> {
let s = s.as_slice::<f32>()?;
let _s = match l.contiguous_offsets() {
None => Err(Error::Wrapped("input has to be contiguous".into()))?,
Some((o1, o2)) => &s[o1..o2],
};
todo!()
}
#[cfg(feature = "cuda")]
fn cuda_fwd(
&self,
s: &candle::CudaStorage,
l: &Layout,
) -> Result<(candle::CudaStorage, Shape)> {
let device = s.device().clone();
let s = s.as_cuda_slice::<f32>()?;
let s = match l.contiguous_offsets() {
None => Err(Error::Wrapped("input has to be contiguous".into()))?,
Some((o1, o2)) => s, // TODO: slice with o1 and o2
};
let s: std::result::Result<_, candle::cuda_backend::CudaError> =
s.try_clone().map_err(|v| v.into());
let s = s?;
let s = candle::CudaStorage::wrap_cuda_slice(s, device);
Ok((s, l.shape().clone()))
}
}
fn main() -> anyhow::Result<()> {
let args = Args::parse();
let device = candle_examples::device(args.cpu)?;
let t = Tensor::arange(0f32, 14f32, &device)?.reshape((2, 7))?;
println!("{t}");
let t = t.custom_op1(LayerNorm)?;
println!("{t}");
Ok(())
}