Sketch the decode step for whisper.

This commit is contained in:
laurent
2023-07-04 18:25:47 +01:00
parent 9cebf07f0d
commit babf3b4065

View File

@ -2,14 +2,32 @@
// https://github.com/openai/whisper/blob/main/whisper/model.py
// TODO:
// - kv-cache support?
// - language detection?
use anyhow::Result;
use anyhow::{Error as E, Result};
use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor};
use clap::Parser;
use std::collections::HashMap;
const DTYPE: DType = DType::F32;
// Audio parameters.
const SAMPLE_RATE: usize = 16000;
const N_FFT: usize = 400;
const N_MELS: usize = 80;
const HOP_LENGTH: usize = 160;
const CHUNK_LENGTH: usize = 30;
const N_SAMPLES: usize = CHUNK_LENGTH * SAMPLE_RATE; // 480000 samples in a 30-second chunk
const N_FRAMES: usize = N_SAMPLES / HOP_LENGTH; // 3000 frames in a mel spectrogram input
const N_SAMPLES_PER_TOKEN: usize = HOP_LENGTH * 2; // the initial convolutions has stride 2
const FRAMES_PER_SECOND: usize = SAMPLE_RATE / HOP_LENGTH; // 10ms per audio frame
const TOKENS_PER_SECOND: usize = SAMPLE_RATE / N_SAMPLES_PER_TOKEN; // 20ms per audio token
const NO_SPEECH_THRESHOLD: f64 = 0.6;
const LOGPROB_THRESHOLD: f64 = -1.0;
const TEMPERATURES: [f64; 6] = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0];
const COMPRESSION_RATIO_THRESHOLD: f64 = 2.4;
struct VarBuilder<'a> {
safetensors: Option<(HashMap<String, usize>, Vec<SafeTensors<'a>>)>,
dtype: DType,
@ -510,6 +528,7 @@ impl TextDecoder {
mask,
})
}
fn forward(&self, x: &Tensor, xa: &Tensor) -> Result<Tensor> {
let x_dims = x.dims();
let last = x_dims[x_dims.len() - 1];
@ -530,13 +549,18 @@ impl TextDecoder {
struct Whisper {
encoder: AudioEncoder,
decoder: TextDecoder,
config: Config,
}
impl Whisper {
fn load(vb: &VarBuilder, cfg: &Config) -> Result<Self> {
let encoder = AudioEncoder::load("encoder", vb, cfg)?;
let decoder = TextDecoder::load("decoder", vb, cfg)?;
Ok(Self { encoder, decoder })
fn load(vb: &VarBuilder, config: Config) -> Result<Self> {
let encoder = AudioEncoder::load("encoder", vb, &config)?;
let decoder = TextDecoder::load("decoder", vb, &config)?;
Ok(Self {
encoder,
decoder,
config,
})
}
fn forward(&self, mel: &Tensor, tokens: &Tensor) -> Result<Tensor> {
let enc = self.encoder.forward(mel)?;
@ -557,9 +581,60 @@ struct Args {
#[arg(long)]
input: String,
#[arg(long)]
tokenizer_config: String,
}
#[derive(Debug, Clone)]
struct DecodingResult {
audio_features: Tensor,
tokens: Vec<usize>,
text: String,
avg_logprob: f64,
no_speech_prob: f64,
temperature: f64,
compression_ratio: f64,
}
#[derive(Debug, Clone)]
struct Segment {
start: f64,
end: f64,
tokens: Vec<usize>,
result: DecodingResult,
}
fn decode(model: &Whisper, mel: &Tensor, t: f64) -> Result<DecodingResult> {
let audio_features = model.encoder.forward(&mel)?;
let sample_len = model.config.n_text_ctx / 2;
let mut tokens: Vec<u32> = vec![]; // TODO: get initial tokens
for i in 0..sample_len {
let tokens = Tensor::new(tokens.as_slice(), &mel.device())?;
let logits = model.decoder.forward(&tokens, mel)?;
// logits
}
todo!()
}
fn decode_with_fallback(model: &Whisper, segment: &Tensor) -> Result<DecodingResult> {
for (i, &t) in TEMPERATURES.iter().enumerate() {
let dr: DecodingResult = decode(model, segment, t)?;
if i == TEMPERATURES.len() - 1 {
return Ok(dr);
}
let needs_fallback = dr.compression_ratio > COMPRESSION_RATIO_THRESHOLD
|| dr.avg_logprob < LOGPROB_THRESHOLD;
if !needs_fallback || dr.no_speech_prob > NO_SPEECH_THRESHOLD {
return Ok(dr);
}
}
unreachable!()
}
fn main() -> Result<()> {
use tokenizers::Tokenizer;
let args = Args::parse();
let device = if args.cpu {
Device::Cpu
@ -567,23 +642,31 @@ fn main() -> Result<()> {
Device::new_cuda(0)?
};
let tokenizer = Tokenizer::from_file(args.tokenizer_config).map_err(E::msg)?;
let input = unsafe { candle::safetensors::MmapedFile::new(args.input)? };
let input = input.deserialize()?;
let tokens = input.tensor("tokens", &device)?.to_dtype(DType::U32)?;
let mel = input.tensor("mel", &device)?;
let weights = unsafe { candle::safetensors::MmapedFile::new(args.weights)? };
let weights = weights.deserialize()?;
let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, device.clone());
let cfg = Config::tiny_en();
let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, device);
let model = Whisper::load(&vb, Config::tiny_en())?;
let model = Whisper::load(&vb, &cfg)?;
let logits = model.forward(&mel, &tokens)?;
println!("tokens\n{tokens}");
println!("logits:\n{logits}");
println!("python logits: {}", input.tensor("dec", &device)?);
let enc = model.encoder.forward(&mel)?;
println!("encoder:\n{enc}");
println!("python enc: {}", input.tensor("enc", &device)?);
let (_, content_frames) = mel.shape().r2()?;
let content_frames = content_frames - N_SAMPLES;
let mut seek = 0;
while seek < content_frames {
let time_offset = (seek * HOP_LENGTH) as f64 / SAMPLE_RATE as f64;
let segment_size = usize::min(content_frames - seek, N_FRAMES);
let mel_segment = mel.narrow(1, seek, segment_size)?;
let segment_duration = (segment_size * HOP_LENGTH) as f64 / SAMPLE_RATE as f64;
let dr = decode_with_fallback(&model, &mel_segment)?;
if dr.no_speech_prob > NO_SPEECH_THRESHOLD && dr.avg_logprob < LOGPROB_THRESHOLD {
seek += segment_size;
continue;
}
//
}
Ok(())
}