Fix the musicgen example. (#724)

* Fix the musicgen example.

* Retrieve the weights from the hub.
This commit is contained in:
Laurent Mazare
2023-09-03 15:50:39 +02:00
committed by GitHub
parent f7980e07e0
commit bbec527bb9
5 changed files with 62 additions and 134 deletions

View File

@ -1,10 +1,8 @@
// T5 Text Encoder
// https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py
use crate::nn::{embedding, linear, Dropout, Embedding, HiddenAct, Linear, VarBuilder};
use anyhow::Result;
use candle::{DType, Tensor, D};
use candle_nn::Module;
use candle::{DType, Result, Tensor, D};
use candle_nn::{embedding, linear_no_bias, Activation, Embedding, Linear, Module, VarBuilder};
use std::sync::Arc;
#[derive(Debug, Clone, PartialEq)]
@ -21,7 +19,7 @@ pub struct Config {
dropout_rate: f64,
layer_norm_epsilon: f64,
initializer_factor: f64,
feed_forward_proj: HiddenAct,
feed_forward_proj: Activation,
is_decoder: bool,
is_encoder_decoder: bool,
use_cache: bool,
@ -44,7 +42,7 @@ impl Default for Config {
dropout_rate: 0.1,
layer_norm_epsilon: 1e-6,
initializer_factor: 1.0,
feed_forward_proj: HiddenAct::Relu,
feed_forward_proj: Activation::Relu,
is_decoder: false,
is_encoder_decoder: true,
use_cache: true,
@ -63,7 +61,7 @@ impl Config {
d_model: 768,
dropout_rate: 0.1,
eos_token_id: 1,
feed_forward_proj: HiddenAct::Relu,
feed_forward_proj: Activation::Relu,
initializer_factor: 1.0,
is_decoder: false,
is_encoder_decoder: true,
@ -112,27 +110,23 @@ impl T5LayerNorm {
struct T5DenseActDense {
wi: Linear,
wo: Linear,
dropout: Dropout,
act: HiddenAct,
act: Activation,
}
impl T5DenseActDense {
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let wi = linear(cfg.d_model, cfg.d_ff, false, vb.pp("wi"))?;
let wo = linear(cfg.d_ff, cfg.d_model, false, vb.pp("wo"))?;
let dropout = Dropout::new(cfg.dropout_rate);
let wi = linear_no_bias(cfg.d_model, cfg.d_ff, vb.pp("wi"))?;
let wo = linear_no_bias(cfg.d_ff, cfg.d_model, vb.pp("wo"))?;
Ok(Self {
wi,
wo,
dropout,
act: HiddenAct::Relu,
act: Activation::Relu,
})
}
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.wi.forward(xs)?;
let xs = self.act.forward(&xs)?;
let xs = self.dropout.forward(&xs)?;
let xs = self.wo.forward(&xs)?;
Ok(xs)
}
@ -142,7 +136,6 @@ impl T5DenseActDense {
struct T5LayerFF {
dense_relu_dense: T5DenseActDense,
layer_norm: T5LayerNorm,
dropout: Dropout,
}
impl T5LayerFF {
@ -151,18 +144,16 @@ impl T5LayerFF {
let dense_relu_dense = T5DenseActDense::load(vb.pp("DenseReluDense"), cfg)?;
let layer_norm =
T5LayerNorm::load(cfg.d_model, cfg.layer_norm_epsilon, vb.pp("layer_norm"))?;
let dropout = Dropout::new(cfg.dropout_rate);
Ok(Self {
dense_relu_dense,
layer_norm,
dropout,
})
}
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let ys = self.layer_norm.forward(xs)?;
let ys = self.dense_relu_dense.forward(&ys)?;
let xs = (xs + self.dropout.forward(&ys)?)?;
let xs = (xs + ys)?;
Ok(xs)
}
}
@ -181,10 +172,10 @@ struct T5Attention {
impl T5Attention {
fn load(h: bool, vb: VarBuilder, cfg: &Config) -> Result<Self> {
let inner_dim = cfg.num_heads * cfg.d_kv;
let q = linear(cfg.d_model, inner_dim, false, vb.pp("q"))?;
let k = linear(cfg.d_model, inner_dim, false, vb.pp("k"))?;
let v = linear(cfg.d_model, inner_dim, false, vb.pp("v"))?;
let o = linear(inner_dim, cfg.d_model, false, vb.pp("o"))?;
let q = linear_no_bias(cfg.d_model, inner_dim, vb.pp("q"))?;
let k = linear_no_bias(cfg.d_model, inner_dim, vb.pp("k"))?;
let v = linear_no_bias(cfg.d_model, inner_dim, vb.pp("v"))?;
let o = linear_no_bias(inner_dim, cfg.d_model, vb.pp("o"))?;
let relative_attention_bias = if h {
let emb = embedding(
cfg.relative_attention_num_buckets,
@ -235,7 +226,6 @@ impl T5Attention {
struct T5LayerSelfAttention {
self_attention: T5Attention,
layer_norm: T5LayerNorm,
dropout: Dropout,
}
impl T5LayerSelfAttention {
@ -243,11 +233,9 @@ impl T5LayerSelfAttention {
let self_attention = T5Attention::load(h, vb.pp("SelfAttention"), cfg)?;
let layer_norm =
T5LayerNorm::load(cfg.d_model, cfg.layer_norm_epsilon, vb.pp("layer_norm"))?;
let dropout = Dropout::new(cfg.dropout_rate);
Ok(Self {
self_attention,
layer_norm,
dropout,
})
}
@ -315,7 +303,6 @@ struct T5Stack {
block: Vec<T5Block>,
shared: Arc<Embedding>,
final_layer_norm: T5LayerNorm,
dropout: Dropout,
}
impl T5Stack {
@ -328,12 +315,10 @@ impl T5Stack {
cfg.layer_norm_epsilon,
vb.pp("final_layer_norm"),
)?;
let dropout = Dropout::new(cfg.dropout_rate);
Ok(Self {
block,
shared: shared.clone(),
final_layer_norm,
dropout,
})
}
@ -341,12 +326,11 @@ impl T5Stack {
let input_embeds = self.shared.as_ref().forward(input_ids)?;
let (_b_sz, _seq_len) = input_embeds.dims2()?;
let mut hidden_states = self.dropout.forward(&input_embeds)?;
let mut hidden_states = input_embeds;
for block in self.block.iter() {
hidden_states = block.forward(&hidden_states)?
}
let hidden_states = self.final_layer_norm.forward(&hidden_states)?;
let hidden_states = self.dropout.forward(&hidden_states)?;
Ok(hidden_states)
}
}