Llama quantization. (#625)

This commit is contained in:
Laurent Mazare
2023-08-27 14:08:15 +01:00
committed by GitHub
parent 7151f2cf63
commit be471d50ab
2 changed files with 79 additions and 15 deletions

View File

@ -1,15 +1,63 @@
use candle_core::{Device, Result};
use candle_core::quantized::{gguf_file, k_quants, QTensor};
use candle_core::{Device, Result, Tensor};
use clap::{Parser, Subcommand, ValueEnum};
use rayon::prelude::*;
#[derive(ValueEnum, Debug, Clone)]
enum QuantizationMode {
/// The default quantization includes all 2d tensors, except the output tensor which always
/// uses Q6_K.
Llama,
}
impl QuantizationMode {
fn quantize(
&self,
name: &str,
tensor: QTensor,
default: fn(&Tensor) -> Result<QTensor>,
) -> Result<QTensor> {
match self {
Self::Llama => {
// Same behavior as the llama.cpp quantization.
let should_quantize = name.ends_with(".weight") && tensor.rank() == 2;
if should_quantize {
let tensor = tensor.dequantize(&Device::Cpu)?;
if name == "output.weight" {
QTensor::quantize::<k_quants::BlockQ6K>(&tensor)
} else {
default(&tensor)
}
} else {
Ok(tensor)
}
}
}
}
}
#[derive(ValueEnum, Debug, Clone)]
enum Quantization {
#[value(name = "q4_0")]
Q4_0,
#[value(name = "q4_1")]
Q4_1,
#[value(name = "q5_0")]
Q5_0,
#[value(name = "q5_1")]
Q5_1,
#[value(name = "q8_0")]
Q8_0,
#[value(name = "q8_1")]
Q8_1,
Q2k,
Q3k,
Q4k,
Q5k,
Q6k,
Q8k,
F16,
F32,
}
#[derive(ValueEnum, Debug, Clone)]
@ -62,6 +110,10 @@ enum Command {
/// The quantization schema to apply.
#[arg(long, value_enum)]
quantization: Quantization,
/// Which tensor to quantize.
#[arg(long, value_enum, default_value_t = QuantizationMode::Llama)]
mode: QuantizationMode,
},
}
@ -147,7 +199,7 @@ fn run_ls(file: &std::path::PathBuf, format: Option<Format>, verbose: bool) -> R
}
Format::Gguf => {
let mut file = std::fs::File::open(file)?;
let content = candle_core::quantized::gguf_file::Content::read(&mut file)?;
let content = gguf_file::Content::read(&mut file)?;
if verbose {
let mut metadata = content.metadata.into_iter().collect::<Vec<_>>();
metadata.sort_by(|a, b| a.0.cmp(&b.0));
@ -170,14 +222,31 @@ fn run_quantize(
in_file: std::path::PathBuf,
out_file: std::path::PathBuf,
q: Quantization,
qmode: QuantizationMode,
) -> Result<()> {
use candle_core::quantized::{gguf_file, k_quants, QTensor};
// Open the out file early so as to fail directly on missing directories etc.
let mut out_file = std::fs::File::create(out_file)?;
let mut in_ = std::fs::File::open(&in_file)?;
let content = gguf_file::Content::read(&mut in_)?;
println!("tensors: {}", content.tensor_infos.len());
let quantize_fn = match q {
Quantization::Q4_0 => QTensor::quantize::<k_quants::BlockQ4_0>,
Quantization::Q4_1 => QTensor::quantize::<k_quants::BlockQ4_1>,
Quantization::Q5_0 => QTensor::quantize::<k_quants::BlockQ5_0>,
Quantization::Q5_1 => QTensor::quantize::<k_quants::BlockQ5_1>,
Quantization::Q8_0 => QTensor::quantize::<k_quants::BlockQ8_0>,
Quantization::Q8_1 => QTensor::quantize::<k_quants::BlockQ8_1>,
Quantization::Q2k => QTensor::quantize::<k_quants::BlockQ2K>,
Quantization::Q3k => QTensor::quantize::<k_quants::BlockQ3K>,
Quantization::Q4k => QTensor::quantize::<k_quants::BlockQ4K>,
Quantization::Q5k => QTensor::quantize::<k_quants::BlockQ5K>,
Quantization::Q6k => QTensor::quantize::<k_quants::BlockQ6K>,
Quantization::Q8k => QTensor::quantize::<k_quants::BlockQ8K>,
Quantization::F16 => QTensor::quantize::<half::f16>,
Quantization::F32 => QTensor::quantize::<f32>,
};
let qtensors = content
.tensor_infos
.par_iter()
@ -185,17 +254,7 @@ fn run_quantize(
println!(" quantizing {name}");
let mut in_file = std::fs::File::open(&in_file)?;
let tensor = content.tensor(&mut in_file, name)?;
let tensor = tensor.dequantize(&Device::Cpu)?;
// TODO: Only quantize the linear weights, and quantize the final layer weights
// differently from the rest.
let tensor = match q {
Quantization::Q2k => QTensor::quantize::<k_quants::BlockQ2K>(&tensor)?,
Quantization::Q3k => QTensor::quantize::<k_quants::BlockQ3K>(&tensor)?,
Quantization::Q4k => QTensor::quantize::<k_quants::BlockQ4K>(&tensor)?,
Quantization::Q5k => QTensor::quantize::<k_quants::BlockQ5K>(&tensor)?,
Quantization::Q6k => QTensor::quantize::<k_quants::BlockQ6K>(&tensor)?,
Quantization::Q8k => QTensor::quantize::<k_quants::BlockQ8K>(&tensor)?,
};
let tensor = qmode.quantize(name, tensor, quantize_fn)?;
Ok((name, tensor))
})
.collect::<Result<Vec<_>>>()?;
@ -233,7 +292,8 @@ fn main() -> anyhow::Result<()> {
in_file,
out_file,
quantization,
} => run_quantize(in_file, out_file, quantization)?,
mode,
} => run_quantize(in_file, out_file, quantization, mode)?,
}
Ok(())
}