Support sinusoidal embeddings in trocr. (#1690)

* Support sinusoidal embeddings in trocr.

* Support tie-word-embeddings.
This commit is contained in:
Laurent Mazare
2024-02-10 15:17:51 +01:00
committed by GitHub
parent 42ce593ec6
commit bf20cc854c

View File

@ -1,9 +1,12 @@
use crate::models::vit::{Config, Embeddings, Encoder}; use crate::models::vit::{Config, Embeddings, Encoder};
use candle::{Result, Tensor}; use candle::{DType, Result, Tensor};
use candle_nn::{ use candle_nn::{
embedding, layer_norm, linear_no_bias, Embedding, LayerNorm, Linear, Module, VarBuilder, embedding, layer_norm, linear_no_bias, Embedding, LayerNorm, Linear, Module, VarBuilder,
}; };
fn default_tie_word_embeddings() -> bool {
true
}
fn default_use_learned_position_embeddings() -> bool { fn default_use_learned_position_embeddings() -> bool {
true true
} }
@ -32,6 +35,8 @@ pub struct TrOCRConfig {
pub decoder_vocab_size: Option<usize>, pub decoder_vocab_size: Option<usize>,
#[serde(default = "default_use_learned_position_embeddings")] #[serde(default = "default_use_learned_position_embeddings")]
pub use_learned_position_embeddings: bool, pub use_learned_position_embeddings: bool,
#[serde(default = "default_tie_word_embeddings")]
pub tie_word_embeddings: bool,
} }
impl Default for TrOCRConfig { impl Default for TrOCRConfig {
@ -58,6 +63,7 @@ impl Default for TrOCRConfig {
eos_token_id: 2, eos_token_id: 2,
decoder_vocab_size: Some(50265), decoder_vocab_size: Some(50265),
use_learned_position_embeddings: true, use_learned_position_embeddings: true,
tie_word_embeddings: true,
} }
} }
} }
@ -78,17 +84,49 @@ impl TrOCRLearnedPositionalEmbedding {
Ok(Self { offset, weights }) Ok(Self { offset, weights })
} }
fn new_sinusoidal(vb: VarBuilder, cfg: &TrOCRConfig) -> Result<Self> {
// https://github.com/huggingface/transformers/blob/58e3d23e97078f361a533b9ec4a6a2de674ea52a/src/transformers/models/trocr/modeling_trocr.py#L81
let embedding_dim = cfg.d_model;
let half_dim = embedding_dim / 2;
let num_positions = cfg.max_position_embeddings + cfg.pad_token_id + 1;
let dev = vb.device();
let inv_freq: Vec<_> = (0..half_dim)
.map(|i| 1f32 / 10000f32.powf(i as f32 / (half_dim - 1) as f32))
.collect();
let inv_freq_len = inv_freq.len();
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?;
let t = Tensor::arange(0u32, num_positions as u32, dev)?
.to_dtype(DType::F32)?
.reshape((num_positions, 1))?;
let freqs = t.matmul(&inv_freq)?;
let emb = Tensor::cat(&[freqs.sin()?, freqs.cos()?], 1)?;
let emb = Tensor::cat(
&[
emb.narrow(0, 0, cfg.pad_token_id)?,
Tensor::zeros((1, embedding_dim), DType::F32, dev)?,
emb.narrow(0, cfg.pad_token_id + 1, cfg.max_position_embeddings)?,
],
0,
)?
.contiguous()?;
let emb = Embedding::new(emb, embedding_dim);
Ok(Self {
offset: cfg.pad_token_id + 1,
weights: emb,
})
}
fn forward(&mut self, input_ids: &Tensor, past_key_values_length: u32) -> Result<Tensor> { fn forward(&mut self, input_ids: &Tensor, past_key_values_length: u32) -> Result<Tensor> {
let (b_sz, seq_len) = input_ids.dims2()?; let (b_sz, seq_len) = input_ids.dims2()?;
let mut positions = Tensor::arange( let positions = Tensor::arange(
past_key_values_length, past_key_values_length,
seq_len as u32 + past_key_values_length, seq_len as u32 + past_key_values_length,
input_ids.device(), input_ids.device(),
)? )?
.expand((b_sz, seq_len))?; .expand((b_sz, seq_len))?;
positions = let positions =
positions.broadcast_add(&Tensor::new(self.offset as u32, input_ids.device())?)?; positions.broadcast_add(&Tensor::new(self.offset as u32, input_ids.device())?)?;
self.weights.forward(&positions) self.weights.forward(&positions)
} }
@ -229,11 +267,9 @@ impl TrOCRDecoderLayer {
let fc1 = linear_no_bias(embed_dim, cfg.decoder_ffn_dim, vb.pp("fc1"))?; let fc1 = linear_no_bias(embed_dim, cfg.decoder_ffn_dim, vb.pp("fc1"))?;
let fc2 = linear_no_bias(cfg.decoder_ffn_dim, embed_dim, vb.pp("fc2"))?; let fc2 = linear_no_bias(cfg.decoder_ffn_dim, embed_dim, vb.pp("fc2"))?;
let final_layer_norm = layer_norm(embed_dim, 1e-5, vb.pp("final_layer_norm"))?; let final_layer_norm = layer_norm(embed_dim, 1e-5, vb.pp("final_layer_norm"))?;
let activation_fn = candle_nn::Activation::Gelu;
Ok(Self { Ok(Self {
self_attn, self_attn,
activation_fn, activation_fn: cfg.activation_function,
self_attn_layer_norm, self_attn_layer_norm,
encoder_attn, encoder_attn,
encoder_attn_layer_norm, encoder_attn_layer_norm,
@ -294,10 +330,11 @@ impl TrOCRDecoder {
let vb = vb.pp("decoder.model.decoder"); let vb = vb.pp("decoder.model.decoder");
let embed_tokens = embedding(cfg.vocab_size, cfg.d_model, vb.pp("embed_tokens"))?; let embed_tokens = embedding(cfg.vocab_size, cfg.d_model, vb.pp("embed_tokens"))?;
if !cfg.use_learned_position_embeddings { let embed_positions = if cfg.use_learned_position_embeddings {
candle::bail!("only models with use_learned_position_embeddings=true are supported") TrOCRLearnedPositionalEmbedding::load(vb.pp("embed_positions"), cfg)?
} } else {
let embed_positions = TrOCRLearnedPositionalEmbedding::load(vb.pp("embed_positions"), cfg)?; TrOCRLearnedPositionalEmbedding::new_sinusoidal(vb.pp("embed_positions"), cfg)?
};
let mut layers = Vec::with_capacity(cfg.decoder_layers); let mut layers = Vec::with_capacity(cfg.decoder_layers);
let vb_l = vb.pp("layers"); let vb_l = vb.pp("layers");
for idx in 0..cfg.decoder_layers { for idx in 0..cfg.decoder_layers {
@ -386,8 +423,15 @@ pub struct TrOCRForCausalLM {
impl TrOCRForCausalLM { impl TrOCRForCausalLM {
pub fn new(decoder_cfg: &TrOCRConfig, vb: VarBuilder) -> Result<Self> { pub fn new(decoder_cfg: &TrOCRConfig, vb: VarBuilder) -> Result<Self> {
let decoder = TrOCRDecoder::new(decoder_cfg, vb.clone())?; let decoder = TrOCRDecoder::new(decoder_cfg, vb.clone())?;
let output_projection = let output_projection = if decoder_cfg.tie_word_embeddings {
candle_nn::Linear::new(decoder.embed_tokens.embeddings().clone(), None); candle_nn::Linear::new(decoder.embed_tokens.embeddings().clone(), None)
} else {
candle_nn::linear_no_bias(
decoder_cfg.d_model,
decoder_cfg.vocab_size,
vb.pp("decoder.output_projection"),
)?
};
Ok(Self { Ok(Self {
decoder, decoder,
output_projection, output_projection,