mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
Add a KV cache to marian decoding. (#1226)
This commit is contained in:
@ -126,6 +126,8 @@ struct Attention {
|
||||
scaling: f64,
|
||||
num_heads: usize,
|
||||
head_dim: usize,
|
||||
kv_cache: Option<(Tensor, Tensor)>,
|
||||
is_decoder: bool,
|
||||
}
|
||||
|
||||
impl Attention {
|
||||
@ -150,6 +152,8 @@ impl Attention {
|
||||
scaling,
|
||||
num_heads,
|
||||
head_dim,
|
||||
kv_cache: None,
|
||||
is_decoder,
|
||||
})
|
||||
}
|
||||
|
||||
@ -161,7 +165,7 @@ impl Attention {
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&self,
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
kv_states: Option<&Tensor>,
|
||||
attn_mask: Option<&Tensor>,
|
||||
@ -173,7 +177,20 @@ impl Attention {
|
||||
None => {
|
||||
let key_states = self._shape(&xs.apply(&self.k_proj)?, b_sz)?;
|
||||
let value_states = self._shape(&xs.apply(&self.v_proj)?, b_sz)?;
|
||||
(key_states, value_states)
|
||||
if self.is_decoder {
|
||||
let kv_states = match &self.kv_cache {
|
||||
None => (key_states, value_states),
|
||||
Some((p_key_states, p_value_states)) => {
|
||||
let key_states = Tensor::cat(&[p_key_states, &key_states], 2)?;
|
||||
let value_states = Tensor::cat(&[p_value_states, &value_states], 2)?;
|
||||
(key_states, value_states)
|
||||
}
|
||||
};
|
||||
self.kv_cache = Some(kv_states.clone());
|
||||
kv_states
|
||||
} else {
|
||||
(key_states, value_states)
|
||||
}
|
||||
}
|
||||
Some(kv_states) => {
|
||||
let key_states = self._shape(&kv_states.apply(&self.k_proj)?, b_sz)?;
|
||||
@ -198,6 +215,10 @@ impl Attention {
|
||||
.reshape((b_sz, tgt_len, self.head_dim * self.num_heads))?
|
||||
.apply(&self.out_proj)
|
||||
}
|
||||
|
||||
fn reset_kv_cache(&mut self) {
|
||||
self.kv_cache = None
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
@ -227,7 +248,7 @@ impl EncoderLayer {
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
|
||||
let residual = xs;
|
||||
let xs = (self.self_attn.forward(xs, None, None)? + residual)?
|
||||
.apply(&self.self_attn_layer_norm)?;
|
||||
@ -275,7 +296,7 @@ impl DecoderLayer {
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&self,
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
encoder_xs: Option<&Tensor>,
|
||||
attn_mask: &Tensor,
|
||||
@ -331,7 +352,7 @@ impl Encoder {
|
||||
})
|
||||
}
|
||||
|
||||
pub fn forward(&self, xs: &Tensor, past_kv_len: usize) -> Result<Tensor> {
|
||||
pub fn forward(&mut self, xs: &Tensor, past_kv_len: usize) -> Result<Tensor> {
|
||||
let xs = xs.apply(&self.embed_tokens)?;
|
||||
let xs = match self.embed_scale {
|
||||
None => xs,
|
||||
@ -342,7 +363,7 @@ impl Encoder {
|
||||
.forward(&xs, past_kv_len)?
|
||||
.unsqueeze(0)?;
|
||||
let mut xs = xs.broadcast_add(&embed_pos)?;
|
||||
for layer in self.layers.iter() {
|
||||
for layer in self.layers.iter_mut() {
|
||||
xs = layer.forward(&xs)?
|
||||
}
|
||||
Ok(xs)
|
||||
@ -380,7 +401,7 @@ impl Decoder {
|
||||
}
|
||||
|
||||
pub fn forward(
|
||||
&self,
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
encoder_xs: Option<&Tensor>,
|
||||
past_kv_len: usize,
|
||||
@ -396,7 +417,7 @@ impl Decoder {
|
||||
.forward(&xs, past_kv_len)?
|
||||
.unsqueeze(0)?;
|
||||
let mut xs = xs.broadcast_add(&embed_pos)?;
|
||||
for layer in self.layers.iter() {
|
||||
for layer in self.layers.iter_mut() {
|
||||
xs = layer.forward(&xs, encoder_xs, attn_mask)?;
|
||||
}
|
||||
Ok(xs)
|
||||
@ -443,15 +464,20 @@ impl MTModel {
|
||||
})
|
||||
}
|
||||
|
||||
pub fn encoder(&self) -> &Encoder {
|
||||
&self.model.encoder
|
||||
pub fn encoder(&mut self) -> &mut Encoder {
|
||||
&mut self.model.encoder
|
||||
}
|
||||
|
||||
pub fn decoder(&self) -> &Decoder {
|
||||
&self.model.decoder
|
||||
pub fn decoder(&mut self) -> &mut Decoder {
|
||||
&mut self.model.decoder
|
||||
}
|
||||
|
||||
pub fn decode(&self, xs: &Tensor, encoder_xs: &Tensor) -> Result<Tensor> {
|
||||
pub fn decode(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
encoder_xs: &Tensor,
|
||||
past_kv_len: usize,
|
||||
) -> Result<Tensor> {
|
||||
let seq_len = xs.dim(1)?;
|
||||
let mask: Vec<_> = (0..seq_len)
|
||||
.flat_map(|i| (0..seq_len).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
|
||||
@ -459,7 +485,7 @@ impl MTModel {
|
||||
let mask = Tensor::from_vec(mask, (seq_len, seq_len), xs.device())?;
|
||||
self.model
|
||||
.decoder
|
||||
.forward(xs, Some(encoder_xs), 0, &mask)?
|
||||
.forward(xs, Some(encoder_xs), past_kv_len, &mask)?
|
||||
.apply(&self.lm_head)?
|
||||
.broadcast_add(&self.final_logits_bias)
|
||||
}
|
||||
|
Reference in New Issue
Block a user