From c63048d3748649c6f13148eb01e6d812d897a0d2 Mon Sep 17 00:00:00 2001 From: Zhuo Jinggang Date: Fri, 12 Jul 2024 16:00:03 +0800 Subject: [PATCH] add quantized qwen2 (#2329) * add quantized version of qwen2 and corresponding example for qwen2-instruct * fix quantized qwen2 clippy error --- .../quantized-qwen2-instruct/README.md | 11 + .../examples/quantized-qwen2-instruct/main.rs | 306 +++++++++++++++++ candle-transformers/src/models/mod.rs | 1 + .../src/models/quantized_qwen2.rs | 323 ++++++++++++++++++ 4 files changed, 641 insertions(+) create mode 100644 candle-examples/examples/quantized-qwen2-instruct/README.md create mode 100644 candle-examples/examples/quantized-qwen2-instruct/main.rs create mode 100644 candle-transformers/src/models/quantized_qwen2.rs diff --git a/candle-examples/examples/quantized-qwen2-instruct/README.md b/candle-examples/examples/quantized-qwen2-instruct/README.md new file mode 100644 index 00000000..8129b3fc --- /dev/null +++ b/candle-examples/examples/quantized-qwen2-instruct/README.md @@ -0,0 +1,11 @@ +# candle-quantized-qwen2-instruct + +[Qwen2]((https://qwenlm.github.io/blog/qwen2/)) is an upgraded version of Qwen1.5, released by Alibaba Cloud. + +## Running the example + +```bash +cargo run --example quantized-qwen2-instruct --release -- --prompt "Write a function to count prime numbers up to N." +``` + +0.5b, 1.5b, 7b and 72b models are available via `--model` argument. diff --git a/candle-examples/examples/quantized-qwen2-instruct/main.rs b/candle-examples/examples/quantized-qwen2-instruct/main.rs new file mode 100644 index 00000000..1bd230e0 --- /dev/null +++ b/candle-examples/examples/quantized-qwen2-instruct/main.rs @@ -0,0 +1,306 @@ +#[cfg(feature = "mkl")] +extern crate intel_mkl_src; + +#[cfg(feature = "accelerate")] +extern crate accelerate_src; + +use clap::{Parser, ValueEnum}; +use std::io::Write; +use tokenizers::Tokenizer; + +use candle::quantized::gguf_file; +use candle::Tensor; +use candle_transformers::generation::{LogitsProcessor, Sampling}; + +use candle_examples::token_output_stream::TokenOutputStream; +use candle_transformers::models::quantized_qwen2::ModelWeights as Qwen2; + +const DEFAULT_PROMPT: &str = "Write a function to count prime numbers up to N. "; + +#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)] +enum Which { + #[value(name = "0.5b")] + W2_0_5b, + #[value(name = "1.5b")] + W2_1_5b, + #[value(name = "7b")] + W2_7b, + #[value(name = "72b")] + W2_72b, +} + +#[derive(Parser, Debug)] +#[command(author, version, about, long_about = None)] +struct Args { + /// GGUF file to load, typically a .gguf file generated by the quantize command from llama.cpp + #[arg(long)] + model: Option, + + /// The initial prompt, use 'interactive' for entering multiple prompts in an interactive way + /// and 'chat' for an interactive model where history of previous prompts and generated tokens + /// is preserved. + #[arg(long)] + prompt: Option, + + /// The length of the sample to generate (in tokens). + #[arg(short = 'n', long, default_value_t = 1000)] + sample_len: usize, + + /// The tokenizer config in json format. + #[arg(long)] + tokenizer: Option, + + /// The temperature used to generate samples, use 0 for greedy sampling. + #[arg(long, default_value_t = 0.8)] + temperature: f64, + + /// Nucleus sampling probability cutoff. + #[arg(long)] + top_p: Option, + + /// Only sample among the top K samples. + #[arg(long)] + top_k: Option, + + /// The seed to use when generating random samples. + #[arg(long, default_value_t = 299792458)] + seed: u64, + + /// Enable tracing (generates a trace-timestamp.json file). + #[arg(long)] + tracing: bool, + + /// Process prompt elements separately. + #[arg(long)] + split_prompt: bool, + + /// Run on CPU rather than GPU even if a GPU is available. + #[arg(long)] + cpu: bool, + + /// Penalty to be applied for repeating tokens, 1. means no penalty. + #[arg(long, default_value_t = 1.1)] + repeat_penalty: f32, + + /// The context size to consider for the repeat penalty. + #[arg(long, default_value_t = 64)] + repeat_last_n: usize, + + /// The model size to use. + #[arg(long, default_value = "0.5b")] + which: Which, +} + +impl Args { + fn tokenizer(&self) -> anyhow::Result { + let tokenizer_path = match &self.tokenizer { + Some(config) => std::path::PathBuf::from(config), + None => { + let api = hf_hub::api::sync::Api::new()?; + let repo = match self.which { + Which::W2_0_5b => "Qwen/Qwen2-0.5B-Instruct", + Which::W2_1_5b => "Qwen/Qwen2-1.5B-Instruct", + Which::W2_7b => "Qwen/Qwen2-7B-Instruct", + Which::W2_72b => "Qwen/Qwen2-72B-Instruct", + }; + let api = api.model(repo.to_string()); + api.get("tokenizer.json")? + } + }; + Tokenizer::from_file(tokenizer_path).map_err(anyhow::Error::msg) + } + + fn model(&self) -> anyhow::Result { + let model_path = match &self.model { + Some(config) => std::path::PathBuf::from(config), + None => { + let (repo, filename, revision) = match self.which { + Which::W2_0_5b => ( + "Qwen/Qwen2-0.5B-Instruct-GGUF", + "qwen2-0_5b-instruct-q4_0.gguf", + "main", + ), + Which::W2_1_5b => ( + "Qwen/Qwen2-1.5B-Instruct-GGUF", + "qwen2-1_5b-instruct-q4_0.gguf", + "main", + ), + Which::W2_7b => ( + "Qwen/Qwen2-7B-Instruct-GGUF", + "qwen2-7b-instruct-q4_0.gguf", + "main", + ), + Which::W2_72b => ( + "Qwen/Qwen2-72B-Instruct-GGUF", + "qwen2-72b-instruct-q4_0.gguf", + "main", + ), + }; + let api = hf_hub::api::sync::Api::new()?; + api.repo(hf_hub::Repo::with_revision( + repo.to_string(), + hf_hub::RepoType::Model, + revision.to_string(), + )) + .get(filename)? + } + }; + Ok(model_path) + } +} + +fn format_size(size_in_bytes: usize) -> String { + if size_in_bytes < 1_000 { + format!("{}B", size_in_bytes) + } else if size_in_bytes < 1_000_000 { + format!("{:.2}KB", size_in_bytes as f64 / 1e3) + } else if size_in_bytes < 1_000_000_000 { + format!("{:.2}MB", size_in_bytes as f64 / 1e6) + } else { + format!("{:.2}GB", size_in_bytes as f64 / 1e9) + } +} + +fn main() -> anyhow::Result<()> { + use tracing_chrome::ChromeLayerBuilder; + use tracing_subscriber::prelude::*; + + let args = Args::parse(); + let _guard = if args.tracing { + let (chrome_layer, guard) = ChromeLayerBuilder::new().build(); + tracing_subscriber::registry().with(chrome_layer).init(); + Some(guard) + } else { + None + }; + + println!( + "avx: {}, neon: {}, simd128: {}, f16c: {}", + candle::utils::with_avx(), + candle::utils::with_neon(), + candle::utils::with_simd128(), + candle::utils::with_f16c() + ); + println!( + "temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}", + args.temperature, args.repeat_penalty, args.repeat_last_n + ); + + let model_path = args.model()?; + let mut file = std::fs::File::open(&model_path)?; + let start = std::time::Instant::now(); + let device = candle_examples::device(args.cpu)?; + + let mut model = { + let model = gguf_file::Content::read(&mut file).map_err(|e| e.with_path(model_path))?; + let mut total_size_in_bytes = 0; + for (_, tensor) in model.tensor_infos.iter() { + let elem_count = tensor.shape.elem_count(); + total_size_in_bytes += + elem_count * tensor.ggml_dtype.type_size() / tensor.ggml_dtype.block_size(); + } + println!( + "loaded {:?} tensors ({}) in {:.2}s", + model.tensor_infos.len(), + &format_size(total_size_in_bytes), + start.elapsed().as_secs_f32(), + ); + Qwen2::from_gguf(model, &mut file, &device)? + }; + println!("model built"); + + let tokenizer = args.tokenizer()?; + let mut tos = TokenOutputStream::new(tokenizer); + let prompt_str = args.prompt.unwrap_or_else(|| DEFAULT_PROMPT.to_string()); + let prompt_str = format!( + "<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n", + prompt_str + ); + print!("formatted instruct prompt: {}", &prompt_str); + let tokens = tos + .tokenizer() + .encode(prompt_str, true) + .map_err(anyhow::Error::msg)?; + let tokens = tokens.get_ids(); + let to_sample = args.sample_len.saturating_sub(1); + let mut all_tokens = vec![]; + let mut logits_processor = { + let temperature = args.temperature; + let sampling = if temperature <= 0. { + Sampling::ArgMax + } else { + match (args.top_k, args.top_p) { + (None, None) => Sampling::All { temperature }, + (Some(k), None) => Sampling::TopK { k, temperature }, + (None, Some(p)) => Sampling::TopP { p, temperature }, + (Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature }, + } + }; + LogitsProcessor::from_sampling(args.seed, sampling) + }; + let start_prompt_processing = std::time::Instant::now(); + let mut next_token = if !args.split_prompt { + let input = Tensor::new(tokens, &device)?.unsqueeze(0)?; + let logits = model.forward(&input, 0)?; + let logits = logits.squeeze(0)?; + logits_processor.sample(&logits)? + } else { + let mut next_token = 0; + for (pos, token) in tokens.iter().enumerate() { + let input = Tensor::new(&[*token], &device)?.unsqueeze(0)?; + let logits = model.forward(&input, pos)?; + let logits = logits.squeeze(0)?; + next_token = logits_processor.sample(&logits)? + } + next_token + }; + let prompt_dt = start_prompt_processing.elapsed(); + all_tokens.push(next_token); + if let Some(t) = tos.next_token(next_token)? { + print!("{t}"); + std::io::stdout().flush()?; + } + let eos_token = *tos.tokenizer().get_vocab(true).get("<|im_end|>").unwrap(); + let start_post_prompt = std::time::Instant::now(); + let mut sampled = 0; + for index in 0..to_sample { + let input = Tensor::new(&[next_token], &device)?.unsqueeze(0)?; + let logits = model.forward(&input, tokens.len() + index)?; + let logits = logits.squeeze(0)?; + let logits = if args.repeat_penalty == 1. { + logits + } else { + let start_at = all_tokens.len().saturating_sub(args.repeat_last_n); + candle_transformers::utils::apply_repeat_penalty( + &logits, + args.repeat_penalty, + &all_tokens[start_at..], + )? + }; + next_token = logits_processor.sample(&logits)?; + all_tokens.push(next_token); + if let Some(t) = tos.next_token(next_token)? { + print!("{t}"); + std::io::stdout().flush()?; + } + sampled += 1; + if next_token == eos_token { + break; + }; + } + if let Some(rest) = tos.decode_rest().map_err(candle::Error::msg)? { + print!("{rest}"); + } + std::io::stdout().flush()?; + let dt = start_post_prompt.elapsed(); + println!( + "\n\n{:4} prompt tokens processed: {:.2} token/s", + tokens.len(), + tokens.len() as f64 / prompt_dt.as_secs_f64(), + ); + println!( + "{sampled:4} tokens generated: {:.2} token/s", + sampled as f64 / dt.as_secs_f64(), + ); + Ok(()) +} diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs index 86a0ec08..7baa12e6 100644 --- a/candle-transformers/src/models/mod.rs +++ b/candle-transformers/src/models/mod.rs @@ -47,6 +47,7 @@ pub mod quantized_moondream; pub mod quantized_mpt; pub mod quantized_phi; pub mod quantized_phi3; +pub mod quantized_qwen2; pub mod quantized_recurrent_gemma; pub mod quantized_rwkv_v5; pub mod quantized_rwkv_v6; diff --git a/candle-transformers/src/models/quantized_qwen2.rs b/candle-transformers/src/models/quantized_qwen2.rs new file mode 100644 index 00000000..addfab2b --- /dev/null +++ b/candle-transformers/src/models/quantized_qwen2.rs @@ -0,0 +1,323 @@ +use crate::{quantized_nn::RmsNorm, utils::repeat_kv}; +use candle::{ + quantized::{gguf_file, QMatMul}, + DType, Device, IndexOp, Result, Tensor, +}; +use candle_nn::{Embedding, Module}; +use std::collections::HashMap; + +#[derive(Debug, Clone)] +struct Mlp { + feed_forward_w1: QMatMul, + feed_forward_w2: QMatMul, + feed_forward_w3: QMatMul, +} + +impl Module for Mlp { + fn forward(&self, xs: &Tensor) -> Result { + let w1 = self.feed_forward_w1.forward(xs)?; + let w3 = self.feed_forward_w3.forward(xs)?; + self.feed_forward_w2 + .forward(&(candle_nn::ops::silu(&w1)? * w3)?) + } +} + +#[derive(Debug, Clone)] +struct LayerWeights { + attention_wq: QMatMul, + attention_wk: QMatMul, + attention_wv: QMatMul, + attention_bq: Tensor, + attention_bk: Tensor, + attention_bv: Tensor, + attention_wo: QMatMul, + attention_norm: RmsNorm, + mlp: Mlp, + ffn_norm: RmsNorm, + n_head: usize, + n_kv_head: usize, + head_dim: usize, + cos: Tensor, + sin: Tensor, + neg_inf: Tensor, + kv_cache: Option<(Tensor, Tensor)>, + span_attn: tracing::Span, + span_rot: tracing::Span, + span_mlp: tracing::Span, +} + +fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: &Tensor) -> Result { + let shape = mask.shape(); + let m = mask.where_cond(&on_true.broadcast_as(shape.dims())?, on_false)?; + Ok(m) +} + +impl LayerWeights { + fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result { + let _enter = self.span_rot.enter(); + let (_b_sz, _n_head, seq_len, _n_embd) = x.dims4()?; + let cos = self.cos.narrow(0, index_pos, seq_len)?; + let sin = self.sin.narrow(0, index_pos, seq_len)?; + candle_nn::rotary_emb::rope(&x.contiguous()?, &cos, &sin) + } + + fn forward_attn( + &mut self, + x: &Tensor, + mask: Option<&Tensor>, + index_pos: usize, + ) -> Result { + let _enter = self.span_attn.enter(); + let (b_sz, seq_len, n_embd) = x.dims3()?; + + let q = self.attention_wq.forward(x)?; + let k = self.attention_wk.forward(x)?; + let v = self.attention_wv.forward(x)?; + + let q = q.broadcast_add(&self.attention_bq)?; + let k = k.broadcast_add(&self.attention_bk)?; + let v = v.broadcast_add(&self.attention_bv)?; + + let q = q + .reshape((b_sz, seq_len, self.n_head, self.head_dim))? + .transpose(1, 2)? + .contiguous()?; + let k = k + .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))? + .transpose(1, 2)? + .contiguous()?; + let v = v + .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))? + .transpose(1, 2)? + .contiguous()?; + + // let (q, k) = self + // .rotary_embedding + // .apply_rotary_emb_qkv(&q, &k, index_pos)?; + let q = self.apply_rotary_emb(&q, index_pos)?; + let k = self.apply_rotary_emb(&k, index_pos)?; + + let (k, v) = match &self.kv_cache { + None => (k, v), + Some((k_cache, v_cache)) => { + if index_pos == 0 { + (k, v) + } else { + let k = Tensor::cat(&[k_cache, &k], 2)?; + let v = Tensor::cat(&[v_cache, &v], 2)?; + (k, v) + } + } + }; + self.kv_cache = Some((k.clone(), v.clone())); + + // Support for MQA, useful for 70B models and mistral. + let k = repeat_kv(k, self.n_head / self.n_kv_head)?; + let v = repeat_kv(v, self.n_head / self.n_kv_head)?; + + let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?; + let att = match mask { + None => att, + Some(mask) => { + let mask = mask.broadcast_as(att.shape())?; + masked_fill(&att, &mask, &self.neg_inf)? + } + }; + let att = candle_nn::ops::softmax_last_dim(&att)?; + // Convert to contiguous as matmul doesn't support strided vs for now. + let y = att.matmul(&v.contiguous()?)?; + let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?; + let y = self.attention_wo.forward(&y)?; + Ok(y) + } +} + +pub struct ModelWeights { + tok_embeddings: Embedding, + layers: Vec, + norm: RmsNorm, + output: QMatMul, + masks: HashMap, + span: tracing::Span, + span_output: tracing::Span, +} + +fn precomput_freqs_cis( + head_dim: usize, + freq_base: f32, + context_length: usize, + device: &Device, +) -> Result<(Tensor, Tensor)> { + let theta: Vec<_> = (0..head_dim) + .step_by(2) + .map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32)) + .collect(); + let theta = Tensor::new(theta.as_slice(), device)?; + let idx_theta = Tensor::arange(0, context_length as u32, device)? + .to_dtype(DType::F32)? + .reshape((context_length, 1))? + .matmul(&theta.reshape((1, theta.elem_count()))?)?; + let cos = idx_theta.cos()?; + let sin = idx_theta.sin()?; + Ok((cos, sin)) +} + +impl ModelWeights { + pub fn from_gguf( + ct: gguf_file::Content, + reader: &mut R, + device: &Device, + ) -> Result { + let md_get = |s: &str| match ct.metadata.get(s) { + None => candle::bail!("cannot find {s} in metadata"), + Some(v) => Ok(v), + }; + + let head_count = md_get("qwen2.attention.head_count")?.to_u32()? as usize; + let head_count_kv = md_get("qwen2.attention.head_count_kv")?.to_u32()? as usize; + let embedding_length = md_get("qwen2.embedding_length")?.to_u32()? as usize; + let context_length = md_get("qwen2.context_length")?.to_u32()? as usize; + let block_count = md_get("qwen2.block_count")?.to_u32()? as usize; + let rms_norm_eps = md_get("qwen2.attention.layer_norm_rms_epsilon")?.to_f32()? as f64; + let rope_freq_base = md_get("qwen2.rope.freq_base") + .and_then(|m| m.to_f32()) + .unwrap_or(10000f32); + + let head_dim = embedding_length / head_count; + + let neg_inf = Tensor::new(f32::NEG_INFINITY, device)?; + + let tok_embeddings = ct.tensor(reader, "token_embd.weight", device)?; + let tok_embeddings = tok_embeddings.dequantize(device)?; + let norm = RmsNorm::from_qtensor( + ct.tensor(reader, "output_norm.weight", device)?, + rms_norm_eps, + )?; + let output = match ct.tensor(reader, "output.weight", device) { + Ok(v) => QMatMul::from_qtensor(v)?, + _ => { + // use tie_word_embeddings + QMatMul::from_qtensor(ct.tensor(reader, "token_embd.weight", device)?)? + } + }; + + let (cos, sin) = precomput_freqs_cis(head_dim, rope_freq_base, context_length, device)?; + + let mut layers = Vec::with_capacity(block_count); + + for layer_idx in 0..block_count { + let prefix = format!("blk.{layer_idx}"); + let attention_wq = ct.tensor(reader, &format!("{prefix}.attn_q.weight"), device)?; + let attention_wk = ct.tensor(reader, &format!("{prefix}.attn_k.weight"), device)?; + let attention_wv = ct.tensor(reader, &format!("{prefix}.attn_v.weight"), device)?; + + let attention_bq = ct.tensor(reader, &format!("{prefix}.attn_q.bias"), device)?; + let attention_bk = ct.tensor(reader, &format!("{prefix}.attn_k.bias"), device)?; + let attention_bv = ct.tensor(reader, &format!("{prefix}.attn_v.bias"), device)?; + + let attention_wo = + ct.tensor(reader, &format!("{prefix}.attn_output.weight"), device)?; + + let mlp = { + let feed_forward_w1 = + ct.tensor(reader, &format!("{prefix}.ffn_gate.weight"), device)?; + let feed_forward_w2 = + ct.tensor(reader, &format!("{prefix}.ffn_down.weight"), device)?; + let feed_forward_w3 = + ct.tensor(reader, &format!("{prefix}.ffn_up.weight"), device)?; + Mlp { + feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1)?, + feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2)?, + feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3)?, + } + }; + + let attention_norm = + ct.tensor(reader, &format!("{prefix}.attn_norm.weight"), device)?; + let ffn_norm = ct.tensor(reader, &format!("{prefix}.ffn_norm.weight"), device)?; + + let span_attn = tracing::span!(tracing::Level::TRACE, "attn"); + let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot"); + let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp"); + + layers.push(LayerWeights { + attention_wq: QMatMul::from_qtensor(attention_wq)?, + attention_wk: QMatMul::from_qtensor(attention_wk)?, + attention_wv: QMatMul::from_qtensor(attention_wv)?, + attention_bq: attention_bq.dequantize(device)?, + attention_bk: attention_bk.dequantize(device)?, + attention_bv: attention_bv.dequantize(device)?, + attention_wo: QMatMul::from_qtensor(attention_wo)?, + attention_norm: RmsNorm::from_qtensor(attention_norm, rms_norm_eps)?, + cos: cos.clone(), + sin: sin.clone(), + mlp, + ffn_norm: RmsNorm::from_qtensor(ffn_norm, rms_norm_eps)?, + n_head: head_count, + n_kv_head: head_count_kv, + head_dim, + neg_inf: neg_inf.clone(), + kv_cache: None, + span_attn, + span_rot, + span_mlp, + }); + } + + let span = tracing::span!(tracing::Level::TRACE, "model"); + let span_output = tracing::span!(tracing::Level::TRACE, "output"); + + Ok(Self { + tok_embeddings: Embedding::new(tok_embeddings, embedding_length), + layers, + norm, + output, + masks: HashMap::new(), + span, + span_output, + }) + } + + fn mask(&mut self, t: usize, device: &Device) -> Result { + if let Some(mask) = self.masks.get(&t) { + Ok(mask.clone()) + } else { + let mask: Vec<_> = (0..t) + .flat_map(|i| (0..t).map(move |j| u8::from(j > i))) + .collect(); + let mask = Tensor::from_slice(&mask, (t, t), device)?; + self.masks.insert(t, mask.clone()); + Ok(mask) + } + } + + pub fn forward(&mut self, x: &Tensor, index_pos: usize) -> Result { + let (_b_sz, seq_len) = x.dims2()?; + let mask = if seq_len == 1 { + None + } else { + Some(self.mask(seq_len, x.device())?) + }; + let _enter = self.span.enter(); + let mut layer_in = self.tok_embeddings.forward(x)?; + for layer in self.layers.iter_mut() { + let x = layer_in; + let residual = &x; + let x = layer.attention_norm.forward(&x)?; + let attn = layer.forward_attn(&x, mask.as_ref(), index_pos)?; + let x = (attn + residual)?; + + // MLP + let _enter = layer.span_mlp.enter(); + let residual = &x; + let x = layer.ffn_norm.forward(&x)?; + let x = layer.mlp.forward(&x)?; + let x = (x + residual)?; + layer_in = x + } + let x = self.norm.forward(&layer_in)?; + let x = x.i((.., seq_len - 1, ..))?; + let _enter = self.span_output.enter(); + self.output.forward(&x) + } +}