mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 02:38:10 +00:00
Add a simple Module trait and implement it for the various nn layers (#500)
* Start adding the module trait. * Use the module trait. * Implement module for qmatmul.
This commit is contained in:
@ -1,5 +1,5 @@
|
||||
use candle::{DType, Device, Result, Tensor};
|
||||
use candle_nn::{Embedding, VarBuilder};
|
||||
use candle_nn::{Embedding, Module, VarBuilder};
|
||||
use serde::Deserialize;
|
||||
|
||||
pub const DTYPE: DType = DType::F32;
|
||||
|
@ -1,5 +1,5 @@
|
||||
use candle::{DType, Device, IndexOp, Result, Tensor, D};
|
||||
use candle_nn::{Embedding, LayerNorm, Linear, VarBuilder};
|
||||
use candle_nn::{Embedding, LayerNorm, Linear, Module, VarBuilder};
|
||||
|
||||
fn linear(size1: usize, size2: usize, bias: bool, vb: VarBuilder) -> Result<Linear> {
|
||||
let weight = vb.get((size2, size1), "weight")?;
|
||||
|
@ -1,6 +1,6 @@
|
||||
use anyhow::Result;
|
||||
use candle::{DType, Device, Tensor, D};
|
||||
use candle_nn::{Embedding, LayerNorm, Linear, VarBuilder};
|
||||
use candle_nn::{Embedding, LayerNorm, Linear, Module, VarBuilder};
|
||||
|
||||
const MAX_SEQ_LEN: usize = 5000;
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
use candle::{DType, Device, IndexOp, Result, Tensor, D};
|
||||
use candle_nn::{Embedding, VarBuilder};
|
||||
use candle_nn::{Embedding, Module, VarBuilder};
|
||||
use serde::Deserialize;
|
||||
use std::collections::HashMap;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
@ -1,6 +1,6 @@
|
||||
use candle::{DType, Device, IndexOp, Result, Tensor, D};
|
||||
use candle_nn::linear_no_bias as linear;
|
||||
use candle_nn::{embedding, rms_norm, Embedding, Linear, RmsNorm, VarBuilder};
|
||||
use candle_nn::{embedding, rms_norm, Embedding, Linear, Module, RmsNorm, VarBuilder};
|
||||
use std::collections::HashMap;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
use candle::backend::BackendStorage;
|
||||
use candle::{CpuStorage, CustomOp1, DType, Device, IndexOp, Layout, Result, Shape, Tensor, D};
|
||||
use candle_nn::{rms_norm, Embedding, Linear, RmsNorm, VarBuilder};
|
||||
use candle_nn::{rms_norm, Embedding, Linear, Module, RmsNorm, VarBuilder};
|
||||
use cudarc::nccl::safe::{Comm, ReduceOp};
|
||||
use half::f16;
|
||||
use std::rc::Rc;
|
||||
|
@ -5,7 +5,7 @@ extern crate intel_mkl_src;
|
||||
use clap::{Parser, ValueEnum};
|
||||
|
||||
use candle::{DType, Result, Tensor, D};
|
||||
use candle_nn::{loss, ops, Linear, VarBuilder, VarMap};
|
||||
use candle_nn::{loss, ops, Linear, Module, VarBuilder, VarMap};
|
||||
|
||||
const IMAGE_DIM: usize = 784;
|
||||
const LABELS: usize = 10;
|
||||
|
@ -1,6 +1,7 @@
|
||||
use crate::nn::{conv1d, conv1d_weight_norm, Conv1d, Conv1dConfig, VarBuilder};
|
||||
use anyhow::Result;
|
||||
use candle::{DType, IndexOp, Tensor};
|
||||
use candle_nn::Module;
|
||||
|
||||
// Encodec Model
|
||||
// https://github.com/huggingface/transformers/blob/main/src/transformers/models/encodec/modeling_encodec.py
|
||||
|
@ -4,6 +4,7 @@ use crate::nn::{
|
||||
use crate::{encodec_model, t5_model};
|
||||
use anyhow::Result;
|
||||
use candle::{DType, Device, Tensor, D};
|
||||
use candle_nn::Module;
|
||||
|
||||
// https://github.com/huggingface/transformers/blob/cd4584e3c809bb9e1392ccd3fe38b40daba5519a/src/transformers/models/musicgen/configuration_musicgen.py#L83
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
|
@ -4,6 +4,7 @@
|
||||
use crate::nn::{embedding, linear, Dropout, Embedding, HiddenAct, Linear, VarBuilder};
|
||||
use anyhow::Result;
|
||||
use candle::{DType, Tensor, D};
|
||||
use candle_nn::Module;
|
||||
use std::sync::Arc;
|
||||
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
|
@ -7,7 +7,7 @@ use tokenizers::Tokenizer;
|
||||
use candle::quantized::ggml_file::Content;
|
||||
use candle::quantized::QTensor;
|
||||
use candle::{DType, Device, IndexOp, Result, Tensor, D};
|
||||
use candle_nn::Embedding;
|
||||
use candle_nn::{Embedding, Module};
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
|
||||
const MAX_SEQ_LEN: usize = 4096;
|
||||
|
@ -1,6 +1,7 @@
|
||||
//! Attention Based Building Blocks
|
||||
use candle::{DType, IndexOp, Result, Tensor, D};
|
||||
use candle_nn as nn;
|
||||
use candle_nn::Module;
|
||||
|
||||
#[derive(Debug)]
|
||||
struct GeGlu {
|
||||
|
@ -7,6 +7,7 @@
|
||||
//! https://github.com/openai/CLIP
|
||||
use candle::{DType, Device, Result, Tensor, D};
|
||||
use candle_nn as nn;
|
||||
use candle_nn::Module;
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub enum Activation {
|
||||
|
@ -1,6 +1,7 @@
|
||||
#![allow(dead_code)]
|
||||
use candle::{Result, Tensor, D};
|
||||
use candle_nn as nn;
|
||||
use candle_nn::Module;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct TimestepEmbedding {
|
||||
|
@ -8,6 +8,7 @@
|
||||
use crate::utils::{conv2d, Conv2d};
|
||||
use candle::{Result, Tensor, D};
|
||||
use candle_nn as nn;
|
||||
use candle_nn::Module;
|
||||
|
||||
/// Configuration for a ResNet block.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
|
@ -7,6 +7,7 @@ use crate::unet_2d_blocks::*;
|
||||
use crate::utils::{conv2d, Conv2d};
|
||||
use candle::{Result, Tensor};
|
||||
use candle_nn as nn;
|
||||
use candle_nn::Module;
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct BlockConfig {
|
||||
|
@ -1,4 +1,5 @@
|
||||
use candle::{Device, Result, Tensor};
|
||||
use candle_nn::Module;
|
||||
|
||||
pub fn linspace(start: f64, stop: f64, steps: usize) -> Result<Tensor> {
|
||||
if steps < 1 {
|
||||
|
@ -10,6 +10,7 @@ use crate::unet_2d_blocks::{
|
||||
};
|
||||
use candle::{Result, Tensor};
|
||||
use candle_nn as nn;
|
||||
use candle_nn::Module;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct EncoderConfig {
|
||||
|
@ -1,5 +1,5 @@
|
||||
use candle::{Device, IndexOp, Result, Tensor};
|
||||
use candle_nn::{ops::softmax, Conv1d, Conv1dConfig, Embedding, LayerNorm, VarBuilder};
|
||||
use candle_nn::{ops::softmax, Conv1d, Conv1dConfig, Embedding, LayerNorm, Module, VarBuilder};
|
||||
use serde::Deserialize;
|
||||
|
||||
// The names in comments correspond to the original implementation:
|
||||
|
Reference in New Issue
Block a user