upgrade half library to fix rand (#2806)

fix lints
This commit is contained in:
Mike Seddon
2025-03-14 19:01:54 +11:00
committed by GitHub
parent 111edbc4ea
commit c930ab7e1a
9 changed files with 38 additions and 37 deletions

View File

@ -47,7 +47,7 @@ cudarc = { version = "0.13.5", features = ["std", "cublas", "cublaslt", "curand"
fancy-regex = "0.13.0" fancy-regex = "0.13.0"
gemm = { version = "0.17.0", features = ["wasm-simd128-enable"] } gemm = { version = "0.17.0", features = ["wasm-simd128-enable"] }
hf-hub = "0.4.1" hf-hub = "0.4.1"
half = { version = "2.3.1", features = ["num-traits", "use-intrinsics", "rand_distr"] } half = { version = "2.5.0", features = ["num-traits", "use-intrinsics", "rand_distr"] }
hound = "3.5.1" hound = "3.5.1"
image = { version = "0.25.2", default-features = false, features = ["jpeg", "png"] } image = { version = "0.25.2", default-features = false, features = ["jpeg", "png"] }
imageproc = { version = "0.24.0", default-features = false } imageproc = { version = "0.24.0", default-features = false }
@ -58,8 +58,8 @@ memmap2 = { version = "0.9.3", features = ["stable_deref_trait"] }
num_cpus = "1.15.0" num_cpus = "1.15.0"
num-traits = "0.2.15" num-traits = "0.2.15"
parquet = { version = "51.0.0" } parquet = { version = "51.0.0" }
rand = "0.8.5" rand = "0.9.0"
rand_distr = "0.4.3" rand_distr = "0.5.1"
rayon = "1.7.0" rayon = "1.7.0"
safetensors = "0.4.1" safetensors = "0.4.1"
serde = { version = "1.0.171", features = ["derive"] } serde = { version = "1.0.171", features = ["derive"] }

View File

@ -2482,15 +2482,15 @@ impl BackendDevice for CpuDevice {
use rand::prelude::*; use rand::prelude::*;
let elem_count = shape.elem_count(); let elem_count = shape.elem_count();
let mut rng = rand::thread_rng(); let mut rng = rand::rng();
match dtype { match dtype {
DType::U8 | DType::U32 | DType::I64 => { DType::U8 | DType::U32 | DType::I64 => {
Err(Error::UnsupportedDTypeForOp(dtype, "rand_uniform").bt()) Err(Error::UnsupportedDTypeForOp(dtype, "rand_uniform").bt())
} }
DType::BF16 => { DType::BF16 => {
let mut data = Vec::with_capacity(elem_count); let mut data = Vec::with_capacity(elem_count);
let uniform = let uniform = rand::distr::Uniform::new(bf16::from_f64(min), bf16::from_f64(max))
rand::distributions::Uniform::new(bf16::from_f64(min), bf16::from_f64(max)); .map_err(Error::wrap)?;
for _i in 0..elem_count { for _i in 0..elem_count {
data.push(rng.sample::<bf16, _>(uniform)) data.push(rng.sample::<bf16, _>(uniform))
} }
@ -2498,8 +2498,8 @@ impl BackendDevice for CpuDevice {
} }
DType::F16 => { DType::F16 => {
let mut data = Vec::with_capacity(elem_count); let mut data = Vec::with_capacity(elem_count);
let uniform = let uniform = rand::distr::Uniform::new(f16::from_f64(min), f16::from_f64(max))
rand::distributions::Uniform::new(f16::from_f64(min), f16::from_f64(max)); .map_err(Error::wrap)?;
for _i in 0..elem_count { for _i in 0..elem_count {
data.push(rng.sample::<f16, _>(uniform)) data.push(rng.sample::<f16, _>(uniform))
} }
@ -2507,7 +2507,8 @@ impl BackendDevice for CpuDevice {
} }
DType::F32 => { DType::F32 => {
let mut data = Vec::with_capacity(elem_count); let mut data = Vec::with_capacity(elem_count);
let uniform = rand::distributions::Uniform::new(min as f32, max as f32); let uniform =
rand::distr::Uniform::new(min as f32, max as f32).map_err(Error::wrap)?;
for _i in 0..elem_count { for _i in 0..elem_count {
data.push(rng.sample::<f32, _>(uniform)) data.push(rng.sample::<f32, _>(uniform))
} }
@ -2515,7 +2516,7 @@ impl BackendDevice for CpuDevice {
} }
DType::F64 => { DType::F64 => {
let mut data = Vec::with_capacity(elem_count); let mut data = Vec::with_capacity(elem_count);
let uniform = rand::distributions::Uniform::new(min, max); let uniform = rand::distr::Uniform::new(min, max).map_err(Error::wrap)?;
for _i in 0..elem_count { for _i in 0..elem_count {
data.push(rng.sample::<f64, _>(uniform)) data.push(rng.sample::<f64, _>(uniform))
} }
@ -2528,7 +2529,7 @@ impl BackendDevice for CpuDevice {
use rand::prelude::*; use rand::prelude::*;
let elem_count = shape.elem_count(); let elem_count = shape.elem_count();
let mut rng = rand::thread_rng(); let mut rng = rand::rng();
match dtype { match dtype {
DType::U8 | DType::U32 | DType::I64 => { DType::U8 | DType::U32 | DType::I64 => {
Err(Error::UnsupportedDTypeForOp(dtype, "rand_normal").bt()) Err(Error::UnsupportedDTypeForOp(dtype, "rand_normal").bt())

View File

@ -880,10 +880,10 @@ fn get_random_tensors(
let mut rng = StdRng::seed_from_u64(314159265358979); let mut rng = StdRng::seed_from_u64(314159265358979);
let lhs = (0..m * k) let lhs = (0..m * k)
.map(|_| rng.gen::<f32>() - 0.5) .map(|_| rng.random::<f32>() - 0.5)
.collect::<Vec<_>>(); .collect::<Vec<_>>();
let rhs = (0..n * k) let rhs = (0..n * k)
.map(|_| rng.gen::<f32>() - 0.5) .map(|_| rng.random::<f32>() - 0.5)
.collect::<Vec<_>>(); .collect::<Vec<_>>();
let lhs = Tensor::from_vec(lhs, (m, k), device)?; let lhs = Tensor::from_vec(lhs, (m, k), device)?;

View File

@ -60,8 +60,8 @@ pub struct DatasetRandomIter<'a> {
impl<'a> DatasetRandomIter<'a> { impl<'a> DatasetRandomIter<'a> {
pub fn new(ds: &'a Dataset, valid: bool, seq_len: usize, device: Device) -> Self { pub fn new(ds: &'a Dataset, valid: bool, seq_len: usize, device: Device) -> Self {
use rand::rng;
use rand::seq::SliceRandom; use rand::seq::SliceRandom;
use rand::thread_rng;
let all_tokens = if valid { let all_tokens = if valid {
&ds.valid_tokens &ds.valid_tokens
@ -69,13 +69,13 @@ impl<'a> DatasetRandomIter<'a> {
&ds.train_tokens &ds.train_tokens
}; };
let mut tokens = all_tokens.iter().collect::<Vec<_>>(); let mut tokens = all_tokens.iter().collect::<Vec<_>>();
tokens.shuffle(&mut thread_rng()); tokens.shuffle(&mut rng());
let current_tokens = tokens.pop().unwrap(); let current_tokens = tokens.pop().unwrap();
let seq_len_in_bytes = seq_len * 2; let seq_len_in_bytes = seq_len * 2;
let mut indexes_in_bytes = (0..current_tokens.len() - seq_len_in_bytes) let mut indexes_in_bytes = (0..current_tokens.len() - seq_len_in_bytes)
.step_by(seq_len_in_bytes) .step_by(seq_len_in_bytes)
.collect::<Vec<_>>(); .collect::<Vec<_>>();
indexes_in_bytes.shuffle(&mut thread_rng()); indexes_in_bytes.shuffle(&mut rng());
Self { Self {
all_tokens, all_tokens,
tokens, tokens,
@ -92,21 +92,21 @@ impl Iterator for DatasetRandomIter<'_> {
fn next(&mut self) -> Option<Self::Item> { fn next(&mut self) -> Option<Self::Item> {
use byteorder::{LittleEndian, ReadBytesExt}; use byteorder::{LittleEndian, ReadBytesExt};
use rand::rng;
use rand::seq::SliceRandom; use rand::seq::SliceRandom;
use rand::thread_rng;
let seq_len = self.seq_len; let seq_len = self.seq_len;
if self.indexes_in_bytes.is_empty() { if self.indexes_in_bytes.is_empty() {
if self.tokens.is_empty() { if self.tokens.is_empty() {
self.tokens = self.all_tokens.iter().collect(); self.tokens = self.all_tokens.iter().collect();
self.tokens.shuffle(&mut thread_rng()); self.tokens.shuffle(&mut rng());
} }
self.current_tokens = self.tokens.pop().unwrap(); self.current_tokens = self.tokens.pop().unwrap();
let seq_len_in_bytes = self.seq_len * 2; let seq_len_in_bytes = self.seq_len * 2;
self.indexes_in_bytes = (0..self.current_tokens.len() - seq_len_in_bytes) self.indexes_in_bytes = (0..self.current_tokens.len() - seq_len_in_bytes)
.step_by(seq_len_in_bytes) .step_by(seq_len_in_bytes)
.collect::<Vec<_>>(); .collect::<Vec<_>>();
self.indexes_in_bytes.shuffle(&mut thread_rng()); self.indexes_in_bytes.shuffle(&mut rng());
} }
let start_idx = self.indexes_in_bytes.pop().unwrap(); let start_idx = self.indexes_in_bytes.pop().unwrap();
let bytes = &self.current_tokens[start_idx..start_idx + 2 * (seq_len + 1)]; let bytes = &self.current_tokens[start_idx..start_idx + 2 * (seq_len + 1)];

View File

@ -16,7 +16,7 @@ use candle_transformers::models::quantized_metavoice::transformer as qtransforme
use candle::{DType, IndexOp, Tensor}; use candle::{DType, IndexOp, Tensor};
use candle_nn::VarBuilder; use candle_nn::VarBuilder;
use hf_hub::api::sync::Api; use hf_hub::api::sync::Api;
use rand::{distributions::Distribution, SeedableRng}; use rand::{distr::Distribution, SeedableRng};
pub const ENCODEC_NTOKENS: u32 = 1024; pub const ENCODEC_NTOKENS: u32 = 1024;
@ -250,7 +250,7 @@ fn main() -> Result<()> {
let logits = logits.i(step)?.to_dtype(DType::F32)?; let logits = logits.i(step)?.to_dtype(DType::F32)?;
let logits = &(&logits / 1.0)?; let logits = &(&logits / 1.0)?;
let prs = candle_nn::ops::softmax_last_dim(logits)?.to_vec1::<f32>()?; let prs = candle_nn::ops::softmax_last_dim(logits)?.to_vec1::<f32>()?;
let distr = rand::distributions::WeightedIndex::new(prs.as_slice())?; let distr = rand::distr::weighted::WeightedIndex::new(prs.as_slice())?;
let sample = distr.sample(&mut rng) as u32; let sample = distr.sample(&mut rng) as u32;
codes_.push(sample) codes_.push(sample)
} }

View File

@ -617,7 +617,7 @@ fn run(args: Args) -> Result<()> {
let mut scheduler = sd_config.build_scheduler(n_steps)?; let mut scheduler = sd_config.build_scheduler(n_steps)?;
let device = candle_examples::device(cpu)?; let device = candle_examples::device(cpu)?;
// If a seed is not given, generate a random seed and print it // If a seed is not given, generate a random seed and print it
let seed = seed.unwrap_or(rand::thread_rng().gen_range(0u64..u64::MAX)); let seed = seed.unwrap_or(rand::rng().random_range(0u64..u64::MAX));
println!("Using seed {seed}"); println!("Using seed {seed}");
device.set_seed(seed)?; device.set_seed(seed)?;
let use_guide_scale = guidance_scale > 1.0; let use_guide_scale = guidance_scale > 1.0;

View File

@ -83,7 +83,7 @@ fn rms_norml(device: &Device) -> Result<()> {
let (b_size, seq_len, head_dim) = (24, 70, 64); let (b_size, seq_len, head_dim) = (24, 70, 64);
let el_count = b_size * seq_len * head_dim; let el_count = b_size * seq_len * head_dim;
let mut rng = StdRng::seed_from_u64(299792458); let mut rng = StdRng::seed_from_u64(299792458);
let src: Vec<f32> = (0..el_count).map(|_| rng.gen::<f32>()).collect(); let src: Vec<f32> = (0..el_count).map(|_| rng.random::<f32>()).collect();
let tensor = Tensor::new(src, device)?.reshape((b_size, seq_len, head_dim))?; let tensor = Tensor::new(src, device)?.reshape((b_size, seq_len, head_dim))?;
let alpha = Tensor::ones(head_dim, candle::DType::F32, device)?; let alpha = Tensor::ones(head_dim, candle::DType::F32, device)?;
let t = candle_nn::ops::rms_norm(&tensor, &alpha, 1e-5)?; let t = candle_nn::ops::rms_norm(&tensor, &alpha, 1e-5)?;
@ -130,7 +130,7 @@ fn layer_norml(device: &Device) -> Result<()> {
let (b_size, seq_len, head_dim) = (24, 70, 64); let (b_size, seq_len, head_dim) = (24, 70, 64);
let el_count = b_size * seq_len * head_dim; let el_count = b_size * seq_len * head_dim;
let mut rng = StdRng::seed_from_u64(299792458); let mut rng = StdRng::seed_from_u64(299792458);
let src: Vec<f32> = (0..el_count).map(|_| rng.gen::<f32>()).collect(); let src: Vec<f32> = (0..el_count).map(|_| rng.random::<f32>()).collect();
let tensor = Tensor::new(src, device)?.reshape((b_size, seq_len, head_dim))?; let tensor = Tensor::new(src, device)?.reshape((b_size, seq_len, head_dim))?;
let alpha = Tensor::ones(head_dim, candle::DType::F32, device)?; let alpha = Tensor::ones(head_dim, candle::DType::F32, device)?;
let beta = Tensor::zeros(head_dim, candle::DType::F32, device)?; let beta = Tensor::zeros(head_dim, candle::DType::F32, device)?;
@ -161,12 +161,12 @@ fn ropei(device: &Device) -> Result<()> {
let (b_size, num_head, seq_len, head_dim) = (2, 5, 10, 16); let (b_size, num_head, seq_len, head_dim) = (2, 5, 10, 16);
let el_count = b_size * num_head * seq_len * head_dim; let el_count = b_size * num_head * seq_len * head_dim;
let mut rng = StdRng::seed_from_u64(299792458); let mut rng = StdRng::seed_from_u64(299792458);
let src: Vec<f32> = (0..el_count).map(|_| rng.gen::<f32>()).collect(); let src: Vec<f32> = (0..el_count).map(|_| rng.random::<f32>()).collect();
let cos: Vec<f32> = (0..seq_len * head_dim / 2) let cos: Vec<f32> = (0..seq_len * head_dim / 2)
.map(|_| rng.gen::<f32>()) .map(|_| rng.random::<f32>())
.collect(); .collect();
let sin: Vec<f32> = (0..seq_len * head_dim / 2) let sin: Vec<f32> = (0..seq_len * head_dim / 2)
.map(|_| rng.gen::<f32>()) .map(|_| rng.random::<f32>())
.collect(); .collect();
let src = Tensor::from_vec(src, (b_size, num_head, seq_len, head_dim), device)?; let src = Tensor::from_vec(src, (b_size, num_head, seq_len, head_dim), device)?;
let cos = Tensor::from_vec(cos, (seq_len, head_dim / 2), device)?; let cos = Tensor::from_vec(cos, (seq_len, head_dim / 2), device)?;
@ -188,12 +188,12 @@ fn rope(device: &Device) -> Result<()> {
let (b_size, num_head, seq_len, head_dim) = (2, 5, 10, 16); let (b_size, num_head, seq_len, head_dim) = (2, 5, 10, 16);
let el_count = b_size * num_head * seq_len * head_dim; let el_count = b_size * num_head * seq_len * head_dim;
let mut rng = StdRng::seed_from_u64(299792458); let mut rng = StdRng::seed_from_u64(299792458);
let src: Vec<f32> = (0..el_count).map(|_| rng.gen::<f32>()).collect(); let src: Vec<f32> = (0..el_count).map(|_| rng.random::<f32>()).collect();
let cos: Vec<f32> = (0..seq_len * head_dim / 2) let cos: Vec<f32> = (0..seq_len * head_dim / 2)
.map(|_| rng.gen::<f32>()) .map(|_| rng.random::<f32>())
.collect(); .collect();
let sin: Vec<f32> = (0..seq_len * head_dim / 2) let sin: Vec<f32> = (0..seq_len * head_dim / 2)
.map(|_| rng.gen::<f32>()) .map(|_| rng.random::<f32>())
.collect(); .collect();
let src = Tensor::from_vec(src, (b_size, num_head, seq_len, head_dim), device)?; let src = Tensor::from_vec(src, (b_size, num_head, seq_len, head_dim), device)?;
let cos = Tensor::from_vec(cos, (seq_len, head_dim / 2), device)?; let cos = Tensor::from_vec(cos, (seq_len, head_dim / 2), device)?;
@ -215,12 +215,12 @@ fn rope_thd(device: &Device) -> Result<()> {
let (b_size, num_head, seq_len, head_dim) = (2, 5, 10, 16); let (b_size, num_head, seq_len, head_dim) = (2, 5, 10, 16);
let el_count = b_size * num_head * seq_len * head_dim; let el_count = b_size * num_head * seq_len * head_dim;
let mut rng = StdRng::seed_from_u64(299792458); let mut rng = StdRng::seed_from_u64(299792458);
let src: Vec<f32> = (0..el_count).map(|_| rng.gen::<f32>()).collect(); let src: Vec<f32> = (0..el_count).map(|_| rng.random::<f32>()).collect();
let cos: Vec<f32> = (0..seq_len * head_dim / 2) let cos: Vec<f32> = (0..seq_len * head_dim / 2)
.map(|_| rng.gen::<f32>()) .map(|_| rng.random::<f32>())
.collect(); .collect();
let sin: Vec<f32> = (0..seq_len * head_dim / 2) let sin: Vec<f32> = (0..seq_len * head_dim / 2)
.map(|_| rng.gen::<f32>()) .map(|_| rng.random::<f32>())
.collect(); .collect();
let src = Tensor::from_vec(src, (b_size, num_head, seq_len, head_dim), device)?; let src = Tensor::from_vec(src, (b_size, num_head, seq_len, head_dim), device)?;
let cos = Tensor::from_vec(cos, (seq_len, head_dim / 2), device)?; let cos = Tensor::from_vec(cos, (seq_len, head_dim / 2), device)?;

View File

@ -4,7 +4,7 @@
//! with support for temperature-based sampling, top-k filtering, nucleus sampling (top-p), //! with support for temperature-based sampling, top-k filtering, nucleus sampling (top-p),
//! and combinations thereof. //! and combinations thereof.
use candle::{Context, DType, Error, Result, Tensor}; use candle::{Context, DType, Error, Result, Tensor};
use rand::{distributions::Distribution, SeedableRng}; use rand::{distr::Distribution, SeedableRng};
#[derive(Clone, PartialEq, Debug)] #[derive(Clone, PartialEq, Debug)]
pub enum Sampling { pub enum Sampling {
@ -50,7 +50,7 @@ impl LogitsProcessor {
} }
fn sample_multinomial(&mut self, prs: &Vec<f32>) -> Result<u32> { fn sample_multinomial(&mut self, prs: &Vec<f32>) -> Result<u32> {
let distr = rand::distributions::WeightedIndex::new(prs).map_err(Error::wrap)?; let distr = rand::distr::weighted::WeightedIndex::new(prs).map_err(Error::wrap)?;
let next_token = distr.sample(&mut self.rng) as u32; let next_token = distr.sample(&mut self.rng) as u32;
Ok(next_token) Ok(next_token)
} }

View File

@ -3,7 +3,7 @@ use anyhow::Error as E;
use candle::{safetensors::Load, DType, Device, IndexOp, Tensor, D}; use candle::{safetensors::Load, DType, Device, IndexOp, Tensor, D};
use candle_nn::{ops::softmax, VarBuilder}; use candle_nn::{ops::softmax, VarBuilder};
pub use candle_transformers::models::whisper::{self as m, Config}; pub use candle_transformers::models::whisper::{self as m, Config};
use rand::{distributions::Distribution, rngs::StdRng, SeedableRng}; use rand::{distr::Distribution, rngs::StdRng, SeedableRng};
use serde::{Deserialize, Serialize}; use serde::{Deserialize, Serialize};
use tokenizers::Tokenizer; use tokenizers::Tokenizer;
use wasm_bindgen::prelude::*; use wasm_bindgen::prelude::*;
@ -221,7 +221,7 @@ impl Decoder {
let next_token = if t > 0f64 { let next_token = if t > 0f64 {
let prs = softmax(&(&logits / t)?, 0)?; let prs = softmax(&(&logits / t)?, 0)?;
let logits_v: Vec<f32> = prs.to_vec1()?; let logits_v: Vec<f32> = prs.to_vec1()?;
let distr = rand::distributions::WeightedIndex::new(&logits_v)?; let distr = rand::distr::weighted::WeightedIndex::new(&logits_v)?;
distr.sample(&mut self.rng) as u32 distr.sample(&mut self.rng) as u32
} else { } else {
let logits_v: Vec<f32> = logits.to_vec1()?; let logits_v: Vec<f32> = logits.to_vec1()?;