Stash for debugging

This commit is contained in:
Ivar Flakstad
2023-12-10 13:11:53 +01:00
parent 35352e441a
commit ce0783d9ff
2 changed files with 285 additions and 80 deletions

View File

@ -795,14 +795,16 @@ impl BackendStorage for MetalStorage {
rhs_l: &Layout, rhs_l: &Layout,
) -> Result<Self> { ) -> Result<Self> {
// Create descriptors // Create descriptors
let (type_id, size) = match self.dtype { let (type_id, size, name) = match self.dtype {
DType::F32 => ( DType::F32 => (
metal::mps::MPS_FLOATBIT_ENCODING | 32, metal::mps::MPS_FLOATBIT_ENCODING | 32,
core::mem::size_of::<f32>() as NSUInteger, core::mem::size_of::<f32>() as NSUInteger,
"sgemm",
), ),
DType::F16 => ( DType::F16 => (
metal::mps::MPS_FLOATBIT_ENCODING | 16, metal::mps::MPS_FLOATBIT_ENCODING | 16,
core::mem::size_of::<f16>() as NSUInteger, core::mem::size_of::<f16>() as NSUInteger,
"hgemm",
), ),
dtype => todo!("Dtype for matmul {dtype:?} is not supported"), dtype => todo!("Dtype for matmul {dtype:?} is not supported"),
}; };
@ -836,60 +838,37 @@ impl BackendStorage for MetalStorage {
mnk: (m, n, k), mnk: (m, n, k),
})? })?
}; };
let b = b as NSUInteger;
let m = m as NSUInteger;
let n = n as NSUInteger;
let k = k as NSUInteger;
let left_matrix = self.matrix( let result_buffer = self.device.new_buffer(b * m * n, self.dtype);
(b, m, k),
transpose_left,
size,
lhs_l.start_offset() as NSUInteger * size,
type_id,
)?;
let right_matrix = rhs.matrix(
(b, k, n),
transpose_right,
size,
rhs_l.start_offset() as NSUInteger * size,
type_id,
)?;
let (result_matrix, out_buffer) =
self.device
.new_matrix((b, m, n), size, type_id, self.dtype)?;
let command_buffer = self.device.command_buffer(); let command_buffer = self.device.command_buffer();
let alpha = 1.0f64; command_buffer.set_label("mfa gemm");
let beta = 0.0f64;
// Create kernel candle_metal_kernels::call_mfa_gemm(
let matrix_multiplication = MatrixMultiplication::init( &self.device.device,
&self.device, &command_buffer,
&self.device.kernels,
name,
&self.buffer,
lhs_l.shape().dims(),
&rhs.buffer,
rhs_l.shape().dims(),
&result_buffer,
(b, m, n, k),
transpose_left, transpose_left,
transpose_right, transpose_right,
m,
n,
k,
alpha,
beta,
) )
.ok_or_else(|| { .map_err(MetalError::from)?;
MetalError::from("Failed to create matrix multiplication kernel".to_string())
})?;
// Encode kernel to command buffer
matrix_multiplication.encode_to_command_buffer(
&command_buffer,
&left_matrix,
&right_matrix,
&result_matrix,
);
command_buffer.set_label("matmul");
drop(command_buffer); drop(command_buffer);
self.device.commit(); self.device.commit();
Ok(Self::new(out_buffer, self.device.clone(), self.dtype())) Ok(Self::new(
self.buffer.clone(),
self.device.clone(),
self.dtype(),
))
} }
fn copy_strided_src(&self, dst: &mut Self, dst_offset: usize, src_l: &Layout) -> Result<()> { fn copy_strided_src(&self, dst: &mut Self, dst_offset: usize, src_l: &Layout) -> Result<()> {

View File

@ -1,7 +1,12 @@
use metal::{Buffer, CommandBufferRef, CompileOptions, ComputeCommandEncoderRef, ComputePipelineState, Device, Function, FunctionConstantValues, Library, MTLDataType, MTLSize, NSUInteger}; use metal::{
use std::collections::HashMap; Buffer, CommandBufferRef, CompileOptions, ComputeCommandEncoderRef, ComputePipelineState,
Device, Function, FunctionConstantValues, Library, MTLDataType, MTLResourceUsage, MTLSize,
NSUInteger,
};
use std::collections::{BTreeMap, HashMap};
use std::ffi::c_void; use std::ffi::c_void;
use std::hash::Hash; use std::hash::Hash;
use std::io::{stdout, Write};
use std::sync::RwLock; use std::sync::RwLock;
const AFFINE: &str = include_str!("affine.metal"); const AFFINE: &str = include_str!("affine.metal");
@ -259,7 +264,10 @@ impl Kernels {
) -> Result<Function, MetalKernelError> { ) -> Result<Function, MetalKernelError> {
let func = self let func = self
.load_library(device, source)? .load_library(device, source)?
.get_function(key.name, key.constants.map(|c| c.create_function_constant_values())) .get_function(
key.name,
key.constants.map(|c| c.create_function_constant_values()),
)
.map_err(|e| MetalKernelError::LoadFunctionError(e.to_string()))?; .map_err(|e| MetalKernelError::LoadFunctionError(e.to_string()))?;
Ok(func) Ok(func)
} }
@ -292,7 +300,21 @@ struct KernelKey {
constants: Option<ConstantValues>, constants: Option<ConstantValues>,
} }
#[derive(Debug, Clone, PartialEq, Eq, Hash)] impl KernelKey {
fn new(name: &'static str) -> Self {
Self {
name,
constants: None,
}
}
fn with_constants(mut self, constants: ConstantValues) -> Self {
self.constants = Some(constants);
self
}
}
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
enum ConstantValueId { enum ConstantValueId {
Index(NSUInteger), Index(NSUInteger),
Name(&'static str), Name(&'static str),
@ -306,7 +328,7 @@ macro_rules! metal_dtype {
impl MetalDType for $ty { impl MetalDType for $ty {
const MTL_DATA_TYPE: MTLDataType = MTLDataType::$mtl_data_type; const MTL_DATA_TYPE: MTLDataType = MTLDataType::$mtl_data_type;
} }
} };
} }
metal_dtype!(f32, Float); metal_dtype!(f32, Float);
metal_dtype!(u32, UInt); metal_dtype!(u32, UInt);
@ -314,18 +336,18 @@ metal_dtype!(u16, UShort);
metal_dtype!(bool, Bool); metal_dtype!(bool, Bool);
#[derive(Debug, Clone, PartialEq)] #[derive(Debug, Clone, PartialEq)]
enum ConstantValue { enum ConstantValueType {
Float(f32), Float(f32),
Uint(u32), Uint(u32),
UShort(u16), UShort(u16),
Bool(bool), Bool(bool),
} }
impl Hash for ConstantValue { impl Hash for ConstantValueType {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) { fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
use ConstantValue::*; use ConstantValueType::*;
match self { match self {
Float(_) => {}, // do nothing Float(v) => v.to_bits().hash(state),
Uint(v) => v.hash(state), Uint(v) => v.hash(state),
UShort(v) => v.hash(state), UShort(v) => v.hash(state),
Bool(v) => v.hash(state), Bool(v) => v.hash(state),
@ -333,10 +355,10 @@ impl Hash for ConstantValue {
} }
} }
impl Eq for ConstantValue {} impl Eq for ConstantValueType {}
#[derive(Debug, Clone, PartialEq, Eq, Hash)] #[derive(Debug, Clone, PartialEq, Eq)]
struct ConstantValues(Vec<(ConstantValueId, ConstantValue)>); struct ConstantValues(BTreeMap<ConstantValueId, ConstantValueType>);
macro_rules! add_indexed_constant { macro_rules! add_indexed_constant {
($fcv:expr, $value:expr, $ty:ty, $idx:expr) => { ($fcv:expr, $value:expr, $ty:ty, $idx:expr) => {
@ -356,14 +378,33 @@ macro_rules! add_named_constant {
) )
}; };
} }
impl Hash for ConstantValues {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
for (id, value) in &self.0 {
id.hash(state);
value.hash(state);
}
}
}
impl ConstantValues { impl ConstantValues {
fn new() -> Self {
Self(BTreeMap::new())
}
fn set(mut self, id: impl Into<ConstantValueId>, value: impl Into<ConstantValueType>) -> Self {
self.0.insert(id.into(), value.into());
self
}
fn create_function_constant_values(&self) -> FunctionConstantValues { fn create_function_constant_values(&self) -> FunctionConstantValues {
use ConstantValueId::*; use ConstantValueId::*;
use ConstantValue::*; use ConstantValueType::*;
let mut function_values = FunctionConstantValues::new(); let mut function_values = FunctionConstantValues::new();
for (id, value) in &self.0 { for (id, value) in &self.0 {
match (id, value) { match (&id, &value) {
(Index(index), Float(value)) => { (Index(index), Float(value)) => {
add_indexed_constant!(function_values, value, f32, *index); add_indexed_constant!(function_values, value, f32, *index);
} }
@ -839,42 +880,227 @@ pub fn call_index_select(
Ok(()) Ok(())
} }
impl From<NSUInteger> for ConstantValueId {
fn from(idx: NSUInteger) -> Self {
Self::Index(idx)
}
}
impl From<usize> for ConstantValueId {
fn from(idx: usize) -> Self {
ConstantValueId::from(idx as NSUInteger)
}
}
impl From<i32> for ConstantValueId {
fn from(idx: i32) -> Self {
ConstantValueId::from(idx as NSUInteger)
}
}
impl From<&'static str> for ConstantValueId {
fn from(name: &'static str) -> Self {
Self::Name(name)
}
}
macro_rules! to_constant_value {
($ty:ty, $constant_value_type:ident) => {
to_constant_value!($ty, $ty, $constant_value_type);
};
($ty:ty, $via:ty, $constant_value_type:ident) => {
impl From<$ty> for ConstantValueType {
fn from(v: $ty) -> Self {
Self::$constant_value_type(v as $via)
}
}
};
}
to_constant_value!(f32, Float);
to_constant_value!(u32, Uint);
to_constant_value!(usize, u32, Uint);
to_constant_value!(u16, UShort);
to_constant_value!(bool, Bool);
struct MFAGemmConfig {
m: usize,
k: usize,
n: usize,
transpose_left: bool,
transpose_right: bool,
batched: bool,
m_simd: u16,
n_simd: u16,
k_simd: u16,
m_splits: u16,
n_splits: u16,
m_group: u16,
n_group: u16,
}
impl From<MFAGemmConfig> for ConstantValues {
fn from(conf: MFAGemmConfig) -> Self {
ConstantValues::new()
.set(0, conf.m)
.set(1, conf.k)
.set(2, conf.n)
.set(10, conf.transpose_left)
.set(11, conf.transpose_right)
.set(12, false)
.set(20, 1.0)
.set(21, 0.0)
.set(100, conf.batched)
.set(101, false)
.set(50001, false)
.set(200, conf.m_simd)
.set(201, conf.n_simd)
.set(202, conf.k_simd)
.set(210, conf.m_splits)
.set(211, conf.n_splits)
// garbage
.set(102, false)
.set(103, false)
.set(113, false)
.set(50000, false)
}
}
#[allow(clippy::too_many_arguments)] #[allow(clippy::too_many_arguments)]
pub fn call_mfa_gemm( pub fn call_mfa_gemm(
device: &Device, device: &Device,
command_buffer: &CommandBufferRef, command_buffer: &CommandBufferRef,
kernels: &Kernels, kernels: &Kernels,
name: &'static str, name: &'static str,
shape: &[usize], lhs: &Buffer,
input: &Buffer, lhs_dims: &[usize],
strides: &[usize], rhs: &Buffer,
offset: usize, rhs_dims: &[usize],
output: &Buffer, output: &Buffer,
output_offset: usize, (b, m, n, k): (usize, usize, usize, usize),
transpose_left: bool,
transpose_right: bool,
) -> Result<(), MetalKernelError> { ) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::MetalFlashAttention, name)?; let batched = b > 1;
let mut c_elements = m * n;
if batched {
c_elements *= 2;
}
let is_half = name == "hgemm";
let is_float = name == "sgemm";
let mut m_group = 32;
let mut n_group = 32;
let mut k_simd = 32;
if c_elements > 10 ^ 6 {
m_group = 48;
n_group = 48;
}
// If K_simd is perfectly equal to matrix K, the compiler can elide a large
// amount of logic in the kernel.
if k >= 33 && k <= 40 {
k_simd = 40;
} else if is_half && k >= 73 && k >= 80 {
k_simd = 80;
} else if c_elements > 10 ^ 6 {
if k <= 16 {
k_simd = 16;
} else if k <= 24 {
k_simd = 24;
} else if k <= 32 {
k_simd = 32;
} else if k <= 48 {
k_simd = 24;
} else if k <= 64 {
k_simd = 32;
} else if is_float {
k_simd = 24;
}
}
let m_splits = 2;
let n_splits = 2;
let m_simd = m_group / m_splits;
let n_simd = n_group / n_splits;
let config = MFAGemmConfig {
m,
k,
n,
transpose_left,
transpose_right,
batched,
m_simd,
n_simd,
k_simd,
m_splits,
n_splits,
m_group,
n_group,
};
let pipeline = kernels.load_pipeline(
device,
Source::MetalFlashAttention,
KernelKey::new(name).with_constants(config.into()),
)?;
let block_type_size = if is_half { 2 } else { 4 };
let a_block_bytes = m_group * k_simd * block_type_size;
let b_block_bytes = k_simd * n_group * block_type_size;
let c_block_bytes = m_group * n_group * block_type_size;
let mut thread_group_memory_length = a_block_bytes + b_block_bytes;
if m % 8 > 0 && n % 8 > 0 {
thread_group_memory_length = core::cmp::max(thread_group_memory_length, c_block_bytes);
}
let num_dims: usize = shape.len();
let encoder = command_buffer.new_compute_command_encoder(); let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline); encoder.set_compute_pipeline_state(&pipeline);
encoder.set_threadgroup_memory_length(0, thread_group_memory_length as NSUInteger);
encoder.use_resources(&[&lhs, &rhs], MTLResourceUsage::Read);
encoder.use_resource(&output, MTLResourceUsage::Write);
encoder.set_buffers(0, &[Some(lhs), Some(rhs), Some(output)], &[0; 3]);
let length: usize = shape.iter().product(); let ceil_divide = |a, b| (a + b - 1) / b;
set_params!(
encoder, let mut grid_z = 1;
(
length, if batched {
num_dims, grid_z = lhs_dims[..lhs_dims.len() - 2].iter().product();
shape, let byte_stride = |shape: &[usize]| -> u64 {
strides, let rank = shape.len();
(input, offset), let mut output = core::mem::size_of::<f32>() * shape[rank - 2] * shape[rank - 1];
(output, output_offset) if shape[..shape.len() - 2].iter().product::<usize>() == 1 {
) output = 0;
}
output as u64
};
let byte_stride_a = byte_stride(lhs_dims);
let byte_stride_b = byte_stride(rhs_dims);
let byte_stride_c = byte_stride(&[m, n]);
type BatchConfig = (u64, u64, u64, u64);
let mut batching_conf: Vec<BatchConfig> = vec![];
for i in 0..grid_z {
batching_conf.push((
i as u64 * byte_stride_a,
i as u64 * byte_stride_b,
i as u64 * byte_stride_c,
0u64,
));
}
set_param(encoder, 10, batching_conf.as_slice());
}
let grid_size = MTLSize::new(
ceil_divide(n as NSUInteger, n_group as NSUInteger),
ceil_divide(m as NSUInteger, m_group as NSUInteger),
grid_z as NSUInteger,
); );
let width: usize = shape.iter().product(); let group_size = MTLSize::new((32 * m_splits * n_splits) as NSUInteger, 1, 1);
let (thread_group_count, thread_group_size) = linear_split(&pipeline, width); encoder.dispatch_thread_groups(grid_size, group_size);
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
encoder.end_encoding(); encoder.end_encoding();
Ok(()) Ok(())
} }