Optimize the cat operation on contiguous tensors (#1855)

* Add a specialized kernel for copy2d.

* Move the cat operations.

* Avoid transpositions in cat.

* Bugfix.

* Bugfix for the cuda kernel.

* Add a benchmark.

* Add more testing.

* Test fix.

* Faster kernel.

* Add the missing kernel.

* Tweak the test.

* Add a metal kernel.

* Fix for the metal kernel.

* Get the tests to pass on metal.

* Also use this opportunity to fix the metal kernel for ELU.

* Add some bf16 kernels.

* Clippy fixes.
This commit is contained in:
Laurent Mazare
2024-03-17 10:49:13 +01:00
committed by GitHub
parent db8b24ae92
commit ce9fbc3682
19 changed files with 744 additions and 208 deletions

View File

@ -666,7 +666,7 @@ impl Tensor {
Ok(from_storage(storage, self.shape(), op, false))
}
fn check_dim(&self, dim: usize, op: &'static str) -> Result<()> {
pub(crate) fn check_dim(&self, dim: usize, op: &'static str) -> Result<()> {
if dim >= self.dims().len() {
Err(Error::DimOutOfRange {
shape: self.shape().clone(),
@ -2149,152 +2149,6 @@ impl Tensor {
Self::cat(&args, dim)
}
/// Concatenates two or more tensors along a particular dimension.
///
/// All tensors must of the same rank, and the output will have
/// the same rank
///
/// ```rust
/// # use candle_core::{Tensor, DType, Device};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
/// let b = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
///
/// let c = Tensor::cat(&[&a, &b], 0)?;
/// assert_eq!(c.shape().dims(), &[4, 3]);
///
/// let c = Tensor::cat(&[&a, &b], 1)?;
/// assert_eq!(c.shape().dims(), &[2, 6]);
/// # Ok::<(), candle_core::Error>(())
/// ```
pub fn cat<A: AsRef<Tensor>, D: Dim>(args: &[A], dim: D) -> Result<Self> {
if args.is_empty() {
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
}
let arg0 = args[0].as_ref();
if args.len() == 1 {
return Ok(arg0.clone());
}
let dim = dim.to_index(arg0.shape(), "cat")?;
for arg in args {
arg.as_ref().check_dim(dim, "cat")?;
}
for (arg_idx, arg) in args.iter().enumerate() {
let arg = arg.as_ref();
if arg0.rank() != arg.rank() {
Err(Error::UnexpectedNumberOfDims {
expected: arg0.rank(),
got: arg.rank(),
shape: arg.shape().clone(),
}
.bt())?
}
for (dim_idx, (v1, v2)) in arg0
.shape()
.dims()
.iter()
.zip(arg.shape().dims().iter())
.enumerate()
{
if dim_idx != dim && v1 != v2 {
Err(Error::ShapeMismatchCat {
dim: dim_idx,
first_shape: arg0.shape().clone(),
n: arg_idx + 1,
nth_shape: arg.shape().clone(),
}
.bt())?
}
}
}
if dim == 0 {
Self::cat0(args)
} else {
// TODO: Avoid these transpositions and have an implementation that works
// for dim != 0...
let args: Vec<Tensor> = args
.iter()
.map(|a| a.as_ref().transpose(0, dim))
.collect::<Result<Vec<_>>>()?;
let cat = Self::cat0(&args)?;
cat.transpose(0, dim)
}
}
fn cat0<A: AsRef<Tensor>>(args: &[A]) -> Result<Self> {
if args.is_empty() {
Err(Error::OpRequiresAtLeastOneTensor { op: "cat" }.bt())?
}
let arg0 = args[0].as_ref();
if args.len() == 1 {
return Ok(arg0.clone());
}
let rank = arg0.rank();
let device = arg0.device();
let dtype = arg0.dtype();
let first_dims = arg0.shape().dims();
let mut cat_dims = first_dims.to_vec();
cat_dims[0] = 0;
let mut offsets = vec![0usize];
for (arg_idx, arg) in args.iter().enumerate() {
let arg = arg.as_ref();
if arg.dtype() != dtype {
Err(Error::DTypeMismatchBinaryOp {
lhs: dtype,
rhs: arg.dtype(),
op: "cat",
}
.bt())?
}
if arg.device().location() != device.location() {
Err(Error::DeviceMismatchBinaryOp {
lhs: device.location(),
rhs: arg.device().location(),
op: "cat",
}
.bt())?
}
if rank != arg.rank() {
Err(Error::UnexpectedNumberOfDims {
expected: rank,
got: arg.rank(),
shape: arg.shape().clone(),
}
.bt())?
}
for (dim_idx, (v1, v2)) in arg0
.shape()
.dims()
.iter()
.zip(arg.shape().dims().iter())
.enumerate()
{
if dim_idx == 0 {
cat_dims[0] += v2;
}
if dim_idx != 0 && v1 != v2 {
Err(Error::ShapeMismatchCat {
dim: dim_idx,
first_shape: arg0.shape().clone(),
n: arg_idx + 1,
nth_shape: arg.shape().clone(),
}
.bt())?
}
}
let next_offset = offsets.last().unwrap() + arg.elem_count();
offsets.push(next_offset);
}
let shape = Shape::from(cat_dims);
let op = BackpropOp::new(args, |args| Op::Cat(args, 0));
let mut storage = device.zeros(&shape, dtype)?;
for (arg, &offset) in args.iter().zip(offsets.iter()) {
let arg = arg.as_ref();
arg.storage()
.copy_strided_src(&mut storage, offset, arg.layout())?;
}
Ok(from_storage(storage, shape, op, false))
}
/// Pad the input tensor using 0s along dimension `dim`. This adds `left` elements before the
/// input tensor values and `right` elements after.
pub fn pad_with_zeros<D: Dim>(&self, dim: D, left: usize, right: usize) -> Result<Self> {