mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 11:08:52 +00:00
feat: download cifar dataset parquet files (#1259)
This commit is contained in:
@ -4,7 +4,9 @@
|
|||||||
//! <https://www.cs.toronto.edu/~kriz/cifar.html>
|
//! <https://www.cs.toronto.edu/~kriz/cifar.html>
|
||||||
//! The binary version of the dataset is used.
|
//! The binary version of the dataset is used.
|
||||||
use crate::vision::Dataset;
|
use crate::vision::Dataset;
|
||||||
use candle::{DType, Device, Result, Tensor};
|
use candle::{DType, Device, Error, Result, Tensor};
|
||||||
|
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||||
|
use parquet::file::reader::{FileReader, SerializedFileReader};
|
||||||
use std::fs::File;
|
use std::fs::File;
|
||||||
use std::io::{BufReader, Read};
|
use std::io::{BufReader, Read};
|
||||||
|
|
||||||
@ -60,3 +62,58 @@ pub fn load_dir<T: AsRef<std::path::Path>>(dir: T) -> Result<Dataset> {
|
|||||||
labels: 10,
|
labels: 10,
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn load_parquet(parquet: SerializedFileReader<std::fs::File>) -> Result<(Tensor, Tensor)> {
|
||||||
|
let samples = parquet.metadata().file_metadata().num_rows() as usize;
|
||||||
|
let mut buffer_images: Vec<u8> = Vec::with_capacity(samples * 1_024);
|
||||||
|
let mut buffer_labels: Vec<u8> = Vec::with_capacity(samples);
|
||||||
|
for row in parquet.into_iter().flatten() {
|
||||||
|
for (_name, field) in row.get_column_iter() {
|
||||||
|
if let parquet::record::Field::Group(subrow) = field {
|
||||||
|
for (_name, field) in subrow.get_column_iter() {
|
||||||
|
if let parquet::record::Field::Bytes(value) = field {
|
||||||
|
let image = image::load_from_memory(value.data()).unwrap();
|
||||||
|
buffer_images.extend(image.to_rgb8().as_raw());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else if let parquet::record::Field::Long(label) = field {
|
||||||
|
buffer_labels.push(*label as u8);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
let images = (Tensor::from_vec(buffer_images, (samples, 3, 32, 32), &Device::Cpu)?
|
||||||
|
.to_dtype(DType::U8)?
|
||||||
|
/ 255.)?;
|
||||||
|
let labels = Tensor::from_vec(buffer_labels, (samples,), &Device::Cpu)?;
|
||||||
|
Ok((images, labels))
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn load() -> Result<Dataset> {
|
||||||
|
let api = Api::new().map_err(|e| Error::Msg(format!("Api error: {e}")))?;
|
||||||
|
let dataset_id = "cifar10".to_string();
|
||||||
|
let repo = Repo::with_revision(
|
||||||
|
dataset_id,
|
||||||
|
RepoType::Dataset,
|
||||||
|
"refs/convert/parquet".to_string(),
|
||||||
|
);
|
||||||
|
let repo = api.repo(repo);
|
||||||
|
let test_parquet_filename = repo
|
||||||
|
.get("plain_text/test/0000.parquet")
|
||||||
|
.map_err(|e| Error::Msg(format!("Api error: {e}")))?;
|
||||||
|
let train_parquet_filename = repo
|
||||||
|
.get("plain_text/train/0000.parquet")
|
||||||
|
.map_err(|e| Error::Msg(format!("Api error: {e}")))?;
|
||||||
|
let test_parquet = SerializedFileReader::new(std::fs::File::open(test_parquet_filename)?)
|
||||||
|
.map_err(|e| Error::Msg(format!("Parquet error: {e}")))?;
|
||||||
|
let train_parquet = SerializedFileReader::new(std::fs::File::open(train_parquet_filename)?)
|
||||||
|
.map_err(|e| Error::Msg(format!("Parquet error: {e}")))?;
|
||||||
|
let (test_images, test_labels) = load_parquet(test_parquet)?;
|
||||||
|
let (train_images, train_labels) = load_parquet(train_parquet)?;
|
||||||
|
Ok(crate::vision::Dataset {
|
||||||
|
train_images,
|
||||||
|
train_labels,
|
||||||
|
test_images,
|
||||||
|
test_labels,
|
||||||
|
labels: 10,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
Reference in New Issue
Block a user