Add a stable diffusion example (#328)

* Start adding a stable-diffusion example.

* Proper computation of the causal mask.

* Add the chunk operation.

* Work in progress: port the attention module.

* Add some dummy modules for conv2d and group-norm, get the attention module to compile.

* Re-enable the 2d convolution.

* Add the embeddings module.

* Add the resnet module.

* Add the unet blocks.

* Add the unet.

* And add the variational auto-encoder.

* Use the pad function from utils.
This commit is contained in:
Laurent Mazare
2023-08-06 18:49:43 +02:00
committed by GitHub
parent 93cfe5642f
commit d34039e352
14 changed files with 2722 additions and 1 deletions

View File

@ -48,3 +48,84 @@ impl Conv1d {
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Conv2dConfig {
pub padding: usize,
pub stride: usize,
}
impl Default for Conv2dConfig {
fn default() -> Self {
Self {
padding: 0,
stride: 1,
}
}
}
#[allow(dead_code)]
#[derive(Debug)]
pub struct Conv2d {
weight: Tensor,
bias: Option<Tensor>,
config: Conv2dConfig,
}
impl Conv2d {
pub fn new(weight: Tensor, bias: Option<Tensor>, config: Conv2dConfig) -> Self {
Self {
weight,
bias,
config,
}
}
pub fn config(&self) -> &Conv2dConfig {
&self.config
}
pub fn forward(&self, _x: &Tensor) -> Result<Tensor> {
todo!()
}
}
pub fn conv1d(
in_channels: usize,
out_channels: usize,
kernel_size: usize,
cfg: Conv1dConfig,
vs: crate::VarBuilder,
) -> Result<Conv1d> {
let init_ws = crate::init::DEFAULT_KAIMING_NORMAL;
let ws = vs.get_or_init((out_channels, in_channels, kernel_size), "weight", init_ws)?;
let bound = 1. / (in_channels as f64).sqrt();
let init_bs = crate::Init::Uniform {
lo: -bound,
up: bound,
};
let bs = vs.get_or_init(out_channels, "bias", init_bs)?;
Ok(Conv1d::new(ws, Some(bs), cfg))
}
pub fn conv2d(
in_channels: usize,
out_channels: usize,
kernel_size: usize,
cfg: Conv2dConfig,
vs: crate::VarBuilder,
) -> Result<Conv2d> {
let init_ws = crate::init::DEFAULT_KAIMING_NORMAL;
let ws = vs.get_or_init(
(out_channels, in_channels, kernel_size, kernel_size),
"weight",
init_ws,
)?;
let bound = 1. / (in_channels as f64).sqrt();
let init_bs = crate::Init::Uniform {
lo: -bound,
up: bound,
};
let bs = vs.get_or_init(out_channels, "bias", init_bs)?;
Ok(Conv2d::new(ws, Some(bs), cfg))
}

View File

@ -0,0 +1,48 @@
//! Group Normalization.
//!
//! This layer applies Group Normalization over a mini-batch of inputs.
use candle::{Result, Tensor};
// This group norm version handles both weight and bias so removes the mean.
#[allow(dead_code)]
#[derive(Debug)]
pub struct GroupNorm {
weight: Tensor,
bias: Tensor,
eps: f64,
num_channels: usize,
num_groups: usize,
}
impl GroupNorm {
pub fn new(
weight: Tensor,
bias: Tensor,
num_channels: usize,
num_groups: usize,
eps: f64,
) -> Self {
Self {
weight,
bias,
eps,
num_channels,
num_groups,
}
}
pub fn forward(&self, _: &Tensor) -> Result<Tensor> {
todo!()
}
}
pub fn group_norm(
num_channels: usize,
num_groups: usize,
eps: f64,
vb: crate::VarBuilder,
) -> Result<GroupNorm> {
let weight = vb.get_or_init(num_channels, "weight", crate::Init::Const(1.))?;
let bias = vb.get_or_init(num_channels, "bias", crate::Init::Const(0.))?;
Ok(GroupNorm::new(weight, bias, num_channels, num_groups, eps))
}

View File

@ -3,6 +3,7 @@
pub mod activation;
pub mod conv;
pub mod embedding;
pub mod group_norm;
pub mod init;
pub mod layer_norm;
pub mod linear;
@ -12,8 +13,9 @@ pub mod optim;
pub mod var_builder;
pub use activation::Activation;
pub use conv::{Conv1d, Conv1dConfig};
pub use conv::{conv1d, conv2d, Conv1d, Conv1dConfig, Conv2d, Conv2dConfig};
pub use embedding::{embedding, Embedding};
pub use group_norm::{group_norm, GroupNorm};
pub use init::Init;
pub use layer_norm::{layer_norm, LayerNorm};
pub use linear::{linear, linear_no_bias, Linear};

View File

@ -32,3 +32,7 @@ pub fn log_softmax<D: candle::shape::Dim>(xs: &Tensor, d: D) -> Result<Tensor> {
let log_sm = diff.broadcast_sub(&sum_exp.log()?)?;
Ok(log_sm)
}
pub fn silu(xs: &Tensor) -> Result<Tensor> {
xs / (xs.neg()?.exp()? + 1.0)?
}