Add info about MADLAD-400 in readme files (#1287)

This commit is contained in:
Juarez Bochi
2023-11-07 09:21:59 -05:00
committed by GitHub
parent 508f811b93
commit d5c2a7b64b
3 changed files with 37 additions and 4 deletions

View File

@ -173,7 +173,7 @@ If you have an addition to this list, please submit a pull request.
- Mistral 7b v0.1. - Mistral 7b v0.1.
- StableLM-3B-4E1T. - StableLM-3B-4E1T.
- Replit-code-v1.5-3B. - Replit-code-v1.5-3B.
- T5. - T5 and its variants: FlanT5, MADLAD400 (translation), CoEdit (Grammar correction).
- Bert. - Bert.
- Whisper (multi-lingual support). - Whisper (multi-lingual support).
- Text to image. - Text to image.

View File

@ -1,5 +1,7 @@
# candle-quantized-t5 # candle-quantized-t5
## Seq2Seq example
This example uses a quantized version of the t5 model. This example uses a quantized version of the t5 model.
```bash ```bash
@ -8,6 +10,8 @@ $ cargo run --example quantized-t5 --release -- --prompt "translate to German: A
Eine schöne Kerze. Eine schöne Kerze.
``` ```
## Generating Quantized weight files
The weight file is automatically retrieved from the hub. It is also possible to The weight file is automatically retrieved from the hub. It is also possible to
generate quantized weight files from the original safetensors file by using the generate quantized weight files from the original safetensors file by using the
`tensor-tools` command line utility via: `tensor-tools` command line utility via:
@ -16,8 +20,11 @@ generate quantized weight files from the original safetensors file by using the
$ cargo run --example tensor-tools --release -- quantize --quantization q6k PATH/TO/T5/model.safetensors /tmp/model.gguf $ cargo run --example tensor-tools --release -- quantize --quantization q6k PATH/TO/T5/model.safetensors /tmp/model.gguf
``` ```
To use a different model, specify the `model-id`. For example, you can use ## Using custom models
quantized [CoEdit models](https://huggingface.co/jbochi/candle-coedit-quantized).
To use a different model, specify the `model-id`.
For example, for text editing, you can use quantized [CoEdit models](https://huggingface.co/jbochi/candle-coedit-quantized).
```bash ```bash
$ cargo run --example quantized-t5 --release -- \ $ cargo run --example quantized-t5 --release -- \
@ -26,6 +33,7 @@ $ cargo run --example quantized-t5 --release -- \
--temperature 0 --temperature 0
... ...
Although their flight is weak, they run quickly through the tree canopy. Although their flight is weak, they run quickly through the tree canopy.
```
By default, it will look for `model.gguf` and `config.json`, but you can specify By default, it will look for `model.gguf` and `config.json`, but you can specify
custom local or remote `weight-file` and `config-file`s: custom local or remote `weight-file` and `config-file`s:
@ -40,3 +48,16 @@ cargo run --example quantized-t5 --release -- \
... ...
Note that a storm surge is what forecasters consider a hurricane's most dangerous part. Note that a storm surge is what forecasters consider a hurricane's most dangerous part.
``` ```
### [MADLAD-400](https://arxiv.org/abs/2309.04662)
MADLAD-400 is a series of multilingual machine translation T5 models trained on 250 billion tokens covering over 450 languages using publicly available data. These models are competitive with significantly larger models.
```bash
cargo run --example quantized-t5 --release -- \
--model-id "jbochi/madlad400-3b-mt" --weight-file "model-q4k.gguf" \
--prompt "<2de> How are you, my friend?" \
--temperature 0
...
Wie geht es dir, mein Freund?
```

View File

@ -5,11 +5,23 @@
```bash ```bash
$ cargo run --example t5 --release -- --model-id "t5-small" --prompt "translate to German: A beautiful candle." --decode $ cargo run --example t5 --release -- --model-id "t5-small" --prompt "translate to German: A beautiful candle." --decode
... ...
Running on CPU, to run on GPU, build this example with `--features cuda`
Eine schöne Kerze. Eine schöne Kerze.
9 tokens generated (2.42 token/s) 9 tokens generated (2.42 token/s)
``` ```
## Translation with [MADLAD-400](https://arxiv.org/abs/2309.04662)
MADLAD-400 is a series of multilingual machine translation T5 models trained on 250 billion tokens covering over 450 languages using publicly available data. These models are competitive with significantly larger models.
```bash
cargo run --example t5 --release -- \
--model-id "jbochi/madlad400-3b-mt" \
--prompt "<2de> How are you, my friend?" \
--decode --temperature 0
...
Wie geht es dir, mein Freund?
```
## Sentence embedding example: ## Sentence embedding example:
```bash ```bash