mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
Add the stable-lm example. (#1046)
* Add the stable-lm example. * Get stable-lm to generate some proper text.
This commit is contained in:
250
candle-examples/examples/stable-lm/main.rs
Normal file
250
candle-examples/examples/stable-lm/main.rs
Normal file
@ -0,0 +1,250 @@
|
|||||||
|
#[cfg(feature = "mkl")]
|
||||||
|
extern crate intel_mkl_src;
|
||||||
|
|
||||||
|
#[cfg(feature = "accelerate")]
|
||||||
|
extern crate accelerate_src;
|
||||||
|
|
||||||
|
use anyhow::{Error as E, Result};
|
||||||
|
use clap::Parser;
|
||||||
|
|
||||||
|
use candle_transformers::models::stable_lm::{Config, Model};
|
||||||
|
|
||||||
|
use candle::{DType, Device, Tensor};
|
||||||
|
use candle_examples::token_output_stream::TokenOutputStream;
|
||||||
|
use candle_nn::VarBuilder;
|
||||||
|
use candle_transformers::generation::LogitsProcessor;
|
||||||
|
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||||
|
use tokenizers::Tokenizer;
|
||||||
|
|
||||||
|
struct TextGeneration {
|
||||||
|
model: Model,
|
||||||
|
device: Device,
|
||||||
|
tokenizer: TokenOutputStream,
|
||||||
|
logits_processor: LogitsProcessor,
|
||||||
|
repeat_penalty: f32,
|
||||||
|
repeat_last_n: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl TextGeneration {
|
||||||
|
#[allow(clippy::too_many_arguments)]
|
||||||
|
fn new(
|
||||||
|
model: Model,
|
||||||
|
tokenizer: Tokenizer,
|
||||||
|
seed: u64,
|
||||||
|
temp: Option<f64>,
|
||||||
|
top_p: Option<f64>,
|
||||||
|
repeat_penalty: f32,
|
||||||
|
repeat_last_n: usize,
|
||||||
|
device: &Device,
|
||||||
|
) -> Self {
|
||||||
|
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||||
|
Self {
|
||||||
|
model,
|
||||||
|
tokenizer: TokenOutputStream::new(tokenizer),
|
||||||
|
logits_processor,
|
||||||
|
repeat_penalty,
|
||||||
|
repeat_last_n,
|
||||||
|
device: device.clone(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||||
|
use std::io::Write;
|
||||||
|
self.tokenizer.clear();
|
||||||
|
let mut tokens = self
|
||||||
|
.tokenizer
|
||||||
|
.tokenizer()
|
||||||
|
.encode(prompt, true)
|
||||||
|
.map_err(E::msg)?
|
||||||
|
.get_ids()
|
||||||
|
.to_vec();
|
||||||
|
for &t in tokens.iter() {
|
||||||
|
if let Some(t) = self.tokenizer.next_token(t)? {
|
||||||
|
print!("{t}")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::io::stdout().flush()?;
|
||||||
|
|
||||||
|
let mut generated_tokens = 0usize;
|
||||||
|
let eos_token = match self.tokenizer.get_token("<|endoftext|>") {
|
||||||
|
Some(token) => token,
|
||||||
|
None => anyhow::bail!("cannot find the <|endoftext|> token"),
|
||||||
|
};
|
||||||
|
let start_gen = std::time::Instant::now();
|
||||||
|
for index in 0..sample_len {
|
||||||
|
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||||
|
let start_pos = tokens.len().saturating_sub(context_size);
|
||||||
|
let ctxt = &tokens[start_pos..];
|
||||||
|
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||||
|
let logits = self.model.forward(&input, start_pos)?;
|
||||||
|
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
||||||
|
let logits = if self.repeat_penalty == 1. {
|
||||||
|
logits
|
||||||
|
} else {
|
||||||
|
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||||
|
candle_transformers::utils::apply_repeat_penalty(
|
||||||
|
&logits,
|
||||||
|
self.repeat_penalty,
|
||||||
|
&tokens[start_at..],
|
||||||
|
)?
|
||||||
|
};
|
||||||
|
|
||||||
|
let next_token = self.logits_processor.sample(&logits)?;
|
||||||
|
tokens.push(next_token);
|
||||||
|
generated_tokens += 1;
|
||||||
|
if next_token == eos_token {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||||
|
print!("{t}");
|
||||||
|
std::io::stdout().flush()?;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
let dt = start_gen.elapsed();
|
||||||
|
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
|
||||||
|
print!("{rest}");
|
||||||
|
}
|
||||||
|
std::io::stdout().flush()?;
|
||||||
|
println!(
|
||||||
|
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||||
|
generated_tokens as f64 / dt.as_secs_f64(),
|
||||||
|
);
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Parser, Debug)]
|
||||||
|
#[command(author, version, about, long_about = None)]
|
||||||
|
struct Args {
|
||||||
|
/// Run on CPU rather than on GPU.
|
||||||
|
#[arg(long)]
|
||||||
|
cpu: bool,
|
||||||
|
|
||||||
|
/// Enable tracing (generates a trace-timestamp.json file).
|
||||||
|
#[arg(long)]
|
||||||
|
tracing: bool,
|
||||||
|
|
||||||
|
#[arg(long)]
|
||||||
|
use_flash_attn: bool,
|
||||||
|
|
||||||
|
#[arg(long)]
|
||||||
|
prompt: String,
|
||||||
|
|
||||||
|
/// The temperature used to generate samples.
|
||||||
|
#[arg(long)]
|
||||||
|
temperature: Option<f64>,
|
||||||
|
|
||||||
|
/// Nucleus sampling probability cutoff.
|
||||||
|
#[arg(long)]
|
||||||
|
top_p: Option<f64>,
|
||||||
|
|
||||||
|
/// The seed to use when generating random samples.
|
||||||
|
#[arg(long, default_value_t = 299792458)]
|
||||||
|
seed: u64,
|
||||||
|
|
||||||
|
/// The length of the sample to generate (in tokens).
|
||||||
|
#[arg(long, short = 'n', default_value_t = 100)]
|
||||||
|
sample_len: usize,
|
||||||
|
|
||||||
|
#[arg(long, default_value = "stabilityai/stablelm-3b-4e1t")]
|
||||||
|
model_id: String,
|
||||||
|
|
||||||
|
#[arg(long, default_value = "main")]
|
||||||
|
revision: String,
|
||||||
|
|
||||||
|
#[arg(long)]
|
||||||
|
tokenizer_file: Option<String>,
|
||||||
|
|
||||||
|
#[arg(long)]
|
||||||
|
weight_files: Option<String>,
|
||||||
|
|
||||||
|
#[arg(long)]
|
||||||
|
quantized: bool,
|
||||||
|
|
||||||
|
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||||
|
#[arg(long, default_value_t = 1.1)]
|
||||||
|
repeat_penalty: f32,
|
||||||
|
|
||||||
|
/// The context size to consider for the repeat penalty.
|
||||||
|
#[arg(long, default_value_t = 64)]
|
||||||
|
repeat_last_n: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
fn main() -> Result<()> {
|
||||||
|
use tracing_chrome::ChromeLayerBuilder;
|
||||||
|
use tracing_subscriber::prelude::*;
|
||||||
|
|
||||||
|
let args = Args::parse();
|
||||||
|
let _guard = if args.tracing {
|
||||||
|
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||||
|
tracing_subscriber::registry().with(chrome_layer).init();
|
||||||
|
Some(guard)
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
};
|
||||||
|
println!(
|
||||||
|
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||||
|
candle::utils::with_avx(),
|
||||||
|
candle::utils::with_neon(),
|
||||||
|
candle::utils::with_simd128(),
|
||||||
|
candle::utils::with_f16c()
|
||||||
|
);
|
||||||
|
println!(
|
||||||
|
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||||
|
args.temperature.unwrap_or(0.),
|
||||||
|
args.repeat_penalty,
|
||||||
|
args.repeat_last_n
|
||||||
|
);
|
||||||
|
|
||||||
|
let start = std::time::Instant::now();
|
||||||
|
let api = Api::new()?;
|
||||||
|
let repo = api.repo(Repo::with_revision(
|
||||||
|
args.model_id,
|
||||||
|
RepoType::Model,
|
||||||
|
args.revision,
|
||||||
|
));
|
||||||
|
let tokenizer_filename = match args.tokenizer_file {
|
||||||
|
Some(file) => std::path::PathBuf::from(file),
|
||||||
|
None => repo.get("tokenizer.json")?,
|
||||||
|
};
|
||||||
|
let filenames = match args.weight_files {
|
||||||
|
Some(files) => files
|
||||||
|
.split(',')
|
||||||
|
.map(std::path::PathBuf::from)
|
||||||
|
.collect::<Vec<_>>(),
|
||||||
|
None => {
|
||||||
|
vec![repo.get("model.safetensors")?]
|
||||||
|
}
|
||||||
|
};
|
||||||
|
println!("retrieved the files in {:?}", start.elapsed());
|
||||||
|
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||||
|
|
||||||
|
let start = std::time::Instant::now();
|
||||||
|
let config = Config::stablelm_3b_4e1t();
|
||||||
|
let (model, device) = {
|
||||||
|
let device = candle_examples::device(args.cpu)?;
|
||||||
|
let dtype = if device.is_cuda() {
|
||||||
|
DType::BF16
|
||||||
|
} else {
|
||||||
|
DType::F32
|
||||||
|
};
|
||||||
|
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||||
|
let model = Model::new(&config, vb)?;
|
||||||
|
(model, device)
|
||||||
|
};
|
||||||
|
|
||||||
|
println!("loaded the model in {:?}", start.elapsed());
|
||||||
|
|
||||||
|
let mut pipeline = TextGeneration::new(
|
||||||
|
model,
|
||||||
|
tokenizer,
|
||||||
|
args.seed,
|
||||||
|
args.temperature,
|
||||||
|
args.top_p,
|
||||||
|
args.repeat_penalty,
|
||||||
|
args.repeat_last_n,
|
||||||
|
&device,
|
||||||
|
);
|
||||||
|
pipeline.run(&args.prompt, args.sample_len)?;
|
||||||
|
Ok(())
|
||||||
|
}
|
@ -148,6 +148,7 @@ struct Attention {
|
|||||||
rotary_emb: Arc<RotaryEmbedding>,
|
rotary_emb: Arc<RotaryEmbedding>,
|
||||||
kv_cache: Option<(Tensor, Tensor)>,
|
kv_cache: Option<(Tensor, Tensor)>,
|
||||||
use_cache: bool,
|
use_cache: bool,
|
||||||
|
rotary_ndims: usize,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Attention {
|
impl Attention {
|
||||||
@ -173,6 +174,7 @@ impl Attention {
|
|||||||
rotary_emb,
|
rotary_emb,
|
||||||
kv_cache: None,
|
kv_cache: None,
|
||||||
use_cache: cfg.use_cache,
|
use_cache: cfg.use_cache,
|
||||||
|
rotary_ndims: cfg.rotary_ndims(),
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -210,9 +212,16 @@ impl Attention {
|
|||||||
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
|
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
|
||||||
.transpose(1, 2)?;
|
.transpose(1, 2)?;
|
||||||
|
|
||||||
let (query_states, key_states) =
|
let (rot_ndims, pass_ndims) = (self.rotary_ndims, self.head_dim - self.rotary_ndims);
|
||||||
|
let query_rot = query_states.narrow(D::Minus1, 0, rot_ndims)?;
|
||||||
|
let query_pass = query_states.narrow(D::Minus1, rot_ndims, pass_ndims)?;
|
||||||
|
let key_rot = key_states.narrow(D::Minus1, 0, rot_ndims)?;
|
||||||
|
let key_pass = key_states.narrow(D::Minus1, rot_ndims, pass_ndims)?;
|
||||||
|
let (query_rot, key_rot) =
|
||||||
self.rotary_emb
|
self.rotary_emb
|
||||||
.apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?;
|
.apply_rotary_emb_qkv(&query_rot, &key_rot, seqlen_offset)?;
|
||||||
|
let query_states = Tensor::cat(&[query_rot, query_pass], D::Minus1)?.contiguous()?;
|
||||||
|
let key_states = Tensor::cat(&[key_rot, key_pass], D::Minus1)?.contiguous()?;
|
||||||
|
|
||||||
let (key_states, value_states) = match &self.kv_cache {
|
let (key_states, value_states) = match &self.kv_cache {
|
||||||
None => (key_states, value_states),
|
None => (key_states, value_states),
|
||||||
@ -226,8 +235,8 @@ impl Attention {
|
|||||||
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
||||||
}
|
}
|
||||||
|
|
||||||
let key_states = self.repeat_kv(key_states)?;
|
let key_states = self.repeat_kv(key_states)?.contiguous()?;
|
||||||
let value_states = self.repeat_kv(value_states)?;
|
let value_states = self.repeat_kv(value_states)?.contiguous()?;
|
||||||
|
|
||||||
let attn_output = {
|
let attn_output = {
|
||||||
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
|
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
|
||||||
|
Reference in New Issue
Block a user