mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
Move the avx specific bits to a separate file. (#481)
This commit is contained in:
431
candle-examples/examples/quantized/main.rs
Normal file
431
candle-examples/examples/quantized/main.rs
Normal file
@ -0,0 +1,431 @@
|
||||
#![allow(dead_code)]
|
||||
use clap::Parser;
|
||||
use std::collections::HashMap;
|
||||
use std::io::Write;
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
use candle::quantized::ggml_file::Content;
|
||||
use candle::quantized::QTensor;
|
||||
use candle::{DType, Device, IndexOp, Result, Tensor, D};
|
||||
use candle_nn::Embedding;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
|
||||
const MAX_SEQ_LEN: usize = 4096;
|
||||
const DEFAULT_PROMPT: &str = "My favorite theorem is ";
|
||||
|
||||
struct RmsNorm {
|
||||
scale: Tensor,
|
||||
eps: f64,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl RmsNorm {
|
||||
fn new(scale: QTensor) -> Result<Self> {
|
||||
let span = tracing::span!(tracing::Level::TRACE, "rms-norm");
|
||||
let scale = scale.dequantize(&Device::Cpu)?;
|
||||
Ok(Self {
|
||||
scale,
|
||||
eps: 1e-5,
|
||||
span,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let (b_sz, seq_len, hidden_size) = x.dims3()?;
|
||||
let norm_x = (x.sqr()?.sum_keepdim(D::Minus1)? / hidden_size as f64)?;
|
||||
let norm_x = norm_x.broadcast_as((b_sz, seq_len, hidden_size))?;
|
||||
let x_normed = (x / (norm_x + self.eps)?.sqrt()?)?;
|
||||
let size = self.scale.dims1()?;
|
||||
let scale = self
|
||||
.scale
|
||||
.to_dtype(DType::F32)?
|
||||
.broadcast_as((b_sz, seq_len, size))?;
|
||||
let x = (scale * x_normed)?;
|
||||
Ok(x)
|
||||
}
|
||||
}
|
||||
|
||||
// QMatMul wrapper adding some tracing.
|
||||
struct QMatMul {
|
||||
inner: candle::quantized::QMatMul,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl QMatMul {
|
||||
fn from_qtensor(qtensor: QTensor) -> Self {
|
||||
let inner = candle::quantized::QMatMul::from_qtensor(qtensor);
|
||||
let span = tracing::span!(tracing::Level::TRACE, "qmatmul");
|
||||
Self { inner, span }
|
||||
}
|
||||
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
self.inner.forward(xs)
|
||||
}
|
||||
}
|
||||
|
||||
struct LayerWeights {
|
||||
attention_wq: QMatMul,
|
||||
attention_wk: QMatMul,
|
||||
attention_wv: QMatMul,
|
||||
attention_wo: QMatMul,
|
||||
attention_norm: RmsNorm,
|
||||
feed_forward_w1: QMatMul,
|
||||
feed_forward_w2: QMatMul,
|
||||
feed_forward_w3: QMatMul,
|
||||
ffn_norm: RmsNorm,
|
||||
n_head: usize,
|
||||
head_dim: usize,
|
||||
cos: Tensor,
|
||||
sin: Tensor,
|
||||
kv_cache: Option<(Tensor, Tensor)>,
|
||||
span_attn: tracing::Span,
|
||||
span_rot: tracing::Span,
|
||||
span_mlp: tracing::Span,
|
||||
}
|
||||
|
||||
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
|
||||
let shape = mask.shape();
|
||||
let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
|
||||
let m = mask.where_cond(&on_true, on_false)?;
|
||||
Ok(m)
|
||||
}
|
||||
|
||||
impl LayerWeights {
|
||||
fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||
let _enter = self.span_rot.enter();
|
||||
let (b_sz, _, seq_len, n_embd) = x.dims4()?;
|
||||
let cos = self.cos.narrow(0, index_pos, seq_len)?;
|
||||
let sin = self.sin.narrow(0, index_pos, seq_len)?;
|
||||
let cos = cos.broadcast_as((b_sz, 1, seq_len, n_embd))?;
|
||||
let sin = sin.broadcast_as((b_sz, 1, seq_len, n_embd))?;
|
||||
let x1 = x.narrow(D::Minus1, 0, n_embd / 2)?;
|
||||
let x2 = x.narrow(D::Minus1, n_embd / 2, n_embd / 2)?;
|
||||
let rotate_x = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?;
|
||||
let rope = (x.broadcast_mul(&cos)? + rotate_x.broadcast_mul(&sin)?)?;
|
||||
Ok(rope)
|
||||
}
|
||||
|
||||
fn forward_attn(&mut self, x: &Tensor, mask: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||
let _enter = self.span_attn.enter();
|
||||
let (b_sz, seq_len, n_embd) = x.dims3()?;
|
||||
let q = self.attention_wq.forward(x)?;
|
||||
let k = self.attention_wk.forward(x)?;
|
||||
let v = self.attention_wv.forward(x)?;
|
||||
|
||||
let q = q
|
||||
.reshape((b_sz, seq_len, self.n_head, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let k = k
|
||||
.reshape((b_sz, seq_len, self.n_head, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let v = v
|
||||
.reshape((b_sz, seq_len, self.n_head, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
|
||||
let q = self.apply_rotary_emb(&q, index_pos)?;
|
||||
let k = self.apply_rotary_emb(&k, index_pos)?;
|
||||
|
||||
let (k, v) = match &self.kv_cache {
|
||||
None => (k, v),
|
||||
Some((k_cache, v_cache)) => {
|
||||
let k = Tensor::cat(&[k_cache, &k], 2)?.contiguous()?;
|
||||
let v = Tensor::cat(&[v_cache, &v], 2)?.contiguous()?;
|
||||
(k, v)
|
||||
}
|
||||
};
|
||||
self.kv_cache = Some((k.clone(), v.clone()));
|
||||
|
||||
// If we start supporting MQA, we need to repeat the k and v tensors here.
|
||||
|
||||
let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
|
||||
let mask = mask.broadcast_as(att.shape())?;
|
||||
let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
|
||||
let att = candle_nn::ops::softmax(&att, D::Minus1)?;
|
||||
// Convert to contiguous as matmul doesn't support strided vs for now.
|
||||
let y = att.matmul(&v.contiguous()?)?;
|
||||
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
|
||||
let y = self.attention_wo.forward(&y)?;
|
||||
Ok(y)
|
||||
}
|
||||
}
|
||||
|
||||
struct ModelWeights {
|
||||
tok_embeddings: Embedding,
|
||||
layers: Vec<LayerWeights>,
|
||||
norm: RmsNorm,
|
||||
output: QMatMul,
|
||||
masks: HashMap<usize, Tensor>,
|
||||
span: tracing::Span,
|
||||
span_output: tracing::Span,
|
||||
}
|
||||
|
||||
struct WeightMap(HashMap<String, QTensor>);
|
||||
impl WeightMap {
|
||||
fn get(&mut self, name: &str) -> Result<QTensor> {
|
||||
match self.0.remove(name) {
|
||||
None => candle::bail!("cannot find tensor with name '{name}'"),
|
||||
Some(tensor) => Ok(tensor),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ModelWeights {
|
||||
fn new(mut ct: Content) -> Result<Self> {
|
||||
let cpu = &Device::Cpu;
|
||||
let head_dim = (ct.hparams.n_embd / ct.hparams.n_head) as usize;
|
||||
|
||||
// precompute freqs_cis
|
||||
let theta: Vec<_> = (0..head_dim)
|
||||
.step_by(2)
|
||||
.map(|i| 1f32 / 10000f32.powf(i as f32 / head_dim as f32))
|
||||
.collect();
|
||||
let theta = Tensor::new(theta.as_slice(), &Device::Cpu)?;
|
||||
let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, &Device::Cpu)?
|
||||
.to_dtype(DType::F32)?
|
||||
.reshape((MAX_SEQ_LEN, 1))?
|
||||
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
|
||||
// This is different from the paper, see:
|
||||
// https://github.com/huggingface/transformers/blob/6112b1c6442aaf7affd2b0676a1cd4eee30c45cf/src/transformers/models/llama/modeling_llama.py#L112
|
||||
let idx_theta = Tensor::cat(&[&idx_theta, &idx_theta], D::Minus1)?;
|
||||
let cos = idx_theta.cos()?;
|
||||
let sin = idx_theta.sin()?;
|
||||
|
||||
let tok_embeddings = ct.remove("tok_embeddings.weight")?;
|
||||
let tok_embeddings = tok_embeddings.dequantize(cpu)?;
|
||||
let norm = RmsNorm::new(ct.remove("norm.weight")?)?;
|
||||
let output = ct.remove("output.weight")?;
|
||||
let mut layers = Vec::with_capacity(ct.hparams.n_layer as usize);
|
||||
for layer_idx in 0..ct.hparams.n_layer {
|
||||
let prefix = format!("layers.{layer_idx}");
|
||||
let attention_wq = ct.remove(&format!("layers.{layer_idx}.attention.wq.weight"))?;
|
||||
let attention_wk = ct.remove(&format!("{prefix}.attention.wk.weight"))?;
|
||||
let attention_wv = ct.remove(&format!("{prefix}.attention.wv.weight"))?;
|
||||
let attention_wo = ct.remove(&format!("{prefix}.attention.wo.weight"))?;
|
||||
let feed_forward_w1 = ct.remove(&format!("{prefix}.feed_forward.w1.weight"))?;
|
||||
let feed_forward_w2 = ct.remove(&format!("{prefix}.feed_forward.w2.weight"))?;
|
||||
let feed_forward_w3 = ct.remove(&format!("{prefix}.feed_forward.w3.weight"))?;
|
||||
let attention_norm = ct.remove(&format!("{prefix}.attention_norm.weight"))?;
|
||||
let ffn_norm = ct.remove(&format!("{prefix}.ffn_norm.weight"))?;
|
||||
let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
|
||||
let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
|
||||
let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp");
|
||||
layers.push(LayerWeights {
|
||||
attention_wq: QMatMul::from_qtensor(attention_wq),
|
||||
attention_wk: QMatMul::from_qtensor(attention_wk),
|
||||
attention_wv: QMatMul::from_qtensor(attention_wv),
|
||||
attention_wo: QMatMul::from_qtensor(attention_wo),
|
||||
attention_norm: RmsNorm::new(attention_norm)?,
|
||||
feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1),
|
||||
feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2),
|
||||
feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3),
|
||||
ffn_norm: RmsNorm::new(ffn_norm)?,
|
||||
n_head: ct.hparams.n_head as usize,
|
||||
head_dim: (ct.hparams.n_embd / ct.hparams.n_head) as usize,
|
||||
cos: cos.clone(),
|
||||
sin: sin.clone(),
|
||||
kv_cache: None,
|
||||
span_attn,
|
||||
span_rot,
|
||||
span_mlp,
|
||||
})
|
||||
}
|
||||
let span = tracing::span!(tracing::Level::TRACE, "model");
|
||||
let span_output = tracing::span!(tracing::Level::TRACE, "output");
|
||||
Ok(Self {
|
||||
tok_embeddings: Embedding::new(tok_embeddings, ct.hparams.n_embd as usize),
|
||||
layers,
|
||||
norm,
|
||||
output: QMatMul::from_qtensor(output),
|
||||
masks: HashMap::new(),
|
||||
span,
|
||||
span_output,
|
||||
})
|
||||
}
|
||||
|
||||
fn mask(&mut self, t: usize) -> Result<Tensor> {
|
||||
if let Some(mask) = self.masks.get(&t) {
|
||||
Ok(mask.clone())
|
||||
} else {
|
||||
let mask: Vec<_> = (0..t)
|
||||
.flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (t, t), &Device::Cpu)?;
|
||||
self.masks.insert(t, mask.clone());
|
||||
Ok(mask)
|
||||
}
|
||||
}
|
||||
|
||||
fn forward(&mut self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||
let (_b_sz, seq_len) = x.dims2()?;
|
||||
let mask = self.mask(seq_len)?;
|
||||
let _enter = self.span.enter();
|
||||
let mut layer_in = self.tok_embeddings.forward(x)?;
|
||||
for layer in self.layers.iter_mut() {
|
||||
let x = layer_in;
|
||||
let residual = &x;
|
||||
let x = layer.attention_norm.forward(&x)?;
|
||||
let attn = layer.forward_attn(&x, &mask, index_pos)?;
|
||||
let x = (attn + residual)?;
|
||||
|
||||
// MLP
|
||||
let _enter = layer.span_mlp.enter();
|
||||
let residual = &x;
|
||||
let x = layer.ffn_norm.forward(&x)?;
|
||||
let w1 = layer.feed_forward_w1.forward(&x)?;
|
||||
let w3 = layer.feed_forward_w3.forward(&x)?;
|
||||
let mlp = layer
|
||||
.feed_forward_w2
|
||||
.forward(&(candle_nn::ops::silu(&w1)? * w3)?)?;
|
||||
layer_in = (mlp + residual)?;
|
||||
}
|
||||
let x = self.norm.forward(&layer_in)?;
|
||||
let x = x.i((.., seq_len - 1, ..))?;
|
||||
let _enter = self.span_output.enter();
|
||||
self.output.forward(&x)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// GGML file to load, typically a .bin file generated by the quantize command from llama.cpp
|
||||
#[arg(long)]
|
||||
model: Option<String>,
|
||||
|
||||
/// The initial prompt.
|
||||
#[arg(long)]
|
||||
prompt: Option<String>,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(short = 'n', long, default_value_t = 100)]
|
||||
sample_len: usize,
|
||||
|
||||
/// The tokenizer config in json format.
|
||||
#[arg(long)]
|
||||
tokenizer: Option<String>,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
}
|
||||
|
||||
impl Args {
|
||||
fn tokenizer(&self) -> anyhow::Result<Tokenizer> {
|
||||
let tokenizer_path = match &self.tokenizer {
|
||||
Some(config) => std::path::PathBuf::from(config),
|
||||
None => {
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let api = api.model("hf-internal-testing/llama-tokenizer".to_string());
|
||||
api.get("tokenizer.json")?
|
||||
}
|
||||
};
|
||||
Tokenizer::from_file(tokenizer_path).map_err(anyhow::Error::msg)
|
||||
}
|
||||
|
||||
fn model(&self) -> anyhow::Result<std::path::PathBuf> {
|
||||
let model_path = match &self.model {
|
||||
Some(config) => std::path::PathBuf::from(config),
|
||||
None => {
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let api = api.model("TheBloke/Llama-2-7B-GGML".to_string());
|
||||
api.get("llama-2-7b.ggmlv3.q4_0.bin")?
|
||||
}
|
||||
};
|
||||
Ok(model_path)
|
||||
}
|
||||
}
|
||||
|
||||
fn main() -> anyhow::Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let mut file = std::fs::File::open(&args.model()?)?;
|
||||
let start = std::time::Instant::now();
|
||||
let model = Content::read(&mut file)?;
|
||||
|
||||
let mut total_size_in_bytes = 0;
|
||||
for (_, tensor) in model.tensors.iter() {
|
||||
let elem_count = tensor.shape().elem_count();
|
||||
total_size_in_bytes += elem_count * tensor.dtype().type_size() / tensor.dtype().blck_size();
|
||||
}
|
||||
let total_size = if total_size_in_bytes < 1_000 {
|
||||
format!("{}B", total_size_in_bytes)
|
||||
} else if total_size_in_bytes < 1_000_000 {
|
||||
format!("{:.2}KB", total_size_in_bytes as f64 / 1e3)
|
||||
} else if total_size_in_bytes < 1_000_000_000 {
|
||||
format!("{:.2}MB", total_size_in_bytes as f64 / 1e6)
|
||||
} else {
|
||||
format!("{:.2}GB", total_size_in_bytes as f64 / 1e9)
|
||||
};
|
||||
|
||||
println!(
|
||||
"loaded {:?} tensors ({}) in {:.2}s",
|
||||
model.tensors.len(),
|
||||
total_size,
|
||||
start.elapsed().as_secs_f32(),
|
||||
);
|
||||
println!("params: {:?}", model.hparams);
|
||||
let mut model = ModelWeights::new(model)?;
|
||||
println!("model built");
|
||||
|
||||
let tokenizer = args.tokenizer()?;
|
||||
let prompt = args.prompt.as_ref().map_or(DEFAULT_PROMPT, |p| p.as_str());
|
||||
let mut tokens = tokenizer
|
||||
.encode(prompt, true)
|
||||
.map_err(anyhow::Error::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
let mut index_pos = 0;
|
||||
let mut logits_processor = LogitsProcessor::new(args.seed, args.temperature);
|
||||
let start_gen = std::time::Instant::now();
|
||||
let mut token_generated = 0;
|
||||
print!("{prompt}");
|
||||
for index in 0..args.sample_len {
|
||||
let context_size = if index == 0 { tokens.len() } else { 1 };
|
||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||
let input = Tensor::new(ctxt, &Device::Cpu)?.unsqueeze(0)?;
|
||||
let logits = model.forward(&input, index_pos)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
index_pos += ctxt.len();
|
||||
|
||||
let next_token = logits_processor.sample(&logits)?;
|
||||
token_generated += 1;
|
||||
tokens.push(next_token);
|
||||
|
||||
// Extracting the last token as a string is complicated, here we just apply some simple
|
||||
// heuristics as it seems to work well enough for this example. See the following for more
|
||||
// details:
|
||||
// https://github.com/huggingface/tokenizers/issues/1141#issuecomment-1562644141
|
||||
if let Some(text) = tokenizer.id_to_token(next_token) {
|
||||
let text = text.replace('▁', " ").replace("<0x0A>", "\n");
|
||||
print!("{text}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
println!(
|
||||
"\n\n{} tokens generated ({} token/s)\n",
|
||||
token_generated,
|
||||
token_generated as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
Reference in New Issue
Block a user