mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 02:38:10 +00:00
Add flash attention (#241)
* Add some flash-attn kernel, import the code for flash-attn v2 from Dao-AILab. * More flash attn. * Set up the flash attn parameters. * Get things to compile locally. * Move the flash attention files in a different directory. * Build the static C library with nvcc. * Add more flash attention. * Update the build part. * Better caching. * Exclude flash attention from the default workspace. * Put flash-attn behind a feature gate. * Get the flash attn kernel to run. * Move the flags to a more appropriate place. * Enable flash attention in llama. * Use flash attention in llama.
This commit is contained in:
@ -116,6 +116,9 @@ struct Args {
|
||||
|
||||
#[arg(long)]
|
||||
v2: bool,
|
||||
|
||||
#[arg(long)]
|
||||
use_flash_attn: bool,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
@ -124,7 +127,7 @@ fn main() -> Result<()> {
|
||||
let args = Args::parse();
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let config = Config::config_7b();
|
||||
let config = Config::config_7b(args.use_flash_attn);
|
||||
let cache = model::Cache::new(!args.no_kv_cache, &config, &device)?;
|
||||
let dtype = if args.use_f32 { DType::F32 } else { DType::F16 };
|
||||
let (llama, tokenizer_filename) = match args.npy {
|
||||
|
@ -13,10 +13,11 @@ pub struct Config {
|
||||
pub n_head: usize,
|
||||
pub n_embd: usize,
|
||||
pub n_key_value_head: usize,
|
||||
pub use_flash_attn: bool,
|
||||
}
|
||||
|
||||
impl Config {
|
||||
pub fn config_7b() -> Self {
|
||||
pub fn config_7b(use_flash_attn: bool) -> Self {
|
||||
Self {
|
||||
hidden_size: 4096,
|
||||
intermediate_size: 11008,
|
||||
@ -25,6 +26,7 @@ impl Config {
|
||||
n_head: 32,
|
||||
n_embd: 4096,
|
||||
n_key_value_head: 32,
|
||||
use_flash_attn,
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -140,6 +142,17 @@ struct CausalSelfAttention {
|
||||
n_key_value_head: usize,
|
||||
head_dim: usize,
|
||||
cache: Cache,
|
||||
use_flash_attn: bool,
|
||||
}
|
||||
|
||||
#[cfg(feature = "flash-attn")]
|
||||
fn flash_attn(q: &Tensor, k: &Tensor, v: &Tensor) -> Result<Tensor> {
|
||||
q.custom_op3(k, v, candle_flash_attn::FlashHdim32Sm80)
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "flash-attn"))]
|
||||
fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor) -> Result<Tensor> {
|
||||
unimplemented!("compile with '--features flash-attn'")
|
||||
}
|
||||
|
||||
impl CausalSelfAttention {
|
||||
@ -202,12 +215,17 @@ impl CausalSelfAttention {
|
||||
|
||||
let k = self.repeat_kv(k)?;
|
||||
let v = self.repeat_kv(v)?;
|
||||
let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
|
||||
let mask = self.cache.mask(seq_len)?.broadcast_as(att.shape())?;
|
||||
let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
|
||||
let att = att.softmax(D::Minus1)?;
|
||||
// Convert to contiguous as matmul doesn't support strided vs for now.
|
||||
let y = att.matmul(&v.contiguous()?)?;
|
||||
|
||||
let y = if self.use_flash_attn {
|
||||
flash_attn(&q, &k, &v)?
|
||||
} else {
|
||||
let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
|
||||
let mask = self.cache.mask(seq_len)?.broadcast_as(att.shape())?;
|
||||
let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
|
||||
let att = att.softmax(D::Minus1)?;
|
||||
// Convert to contiguous as matmul doesn't support strided vs for now.
|
||||
att.matmul(&v.contiguous()?)?
|
||||
};
|
||||
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
|
||||
let y = y.to_dtype(x_dtype)?;
|
||||
let y = self.o_proj.forward(&y)?;
|
||||
@ -245,6 +263,7 @@ impl CausalSelfAttention {
|
||||
n_key_value_head: cfg.n_key_value_head,
|
||||
head_dim: cfg.hidden_size / cfg.n_head,
|
||||
cache: cache.clone(),
|
||||
use_flash_attn: cfg.use_flash_attn,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user