Wuerstchen main (#876)

* Wuerstchen main.

* More of the wuerstchen cli example.

* Paella creation.

* Build the prior model.

* Fix the weight file names.
This commit is contained in:
Laurent Mazare
2023-09-17 13:46:38 +02:00
committed by GitHub
parent 7f65af1f0d
commit db3e9dae04
3 changed files with 213 additions and 273 deletions

View File

@ -99,6 +99,21 @@ impl Config {
activation: Activation::Gelu,
}
}
// https://huggingface.co/warp-ai/wuerstchen/blob/main/text_encoder/config.json
pub fn wuerstchen() -> Self {
Self {
vocab_size: 49408,
embed_dim: 1024,
intermediate_size: 4096,
max_position_embeddings: 77,
pad_with: Some("!".to_string()),
num_hidden_layers: 24,
num_attention_heads: 16,
projection_dim: 1024,
activation: Activation::Gelu,
}
}
}
// CLIP Text Model

View File

@ -65,17 +65,121 @@ impl Module for MixingResidualBlock {
}
#[derive(Debug)]
struct PaellaVQ {
pub struct PaellaVQ {
in_block_conv: candle_nn::Conv2d,
out_block_conv: candle_nn::Conv2d,
down_blocks: Vec<(Option<candle_nn::Conv2d>, MixingResidualBlock)>,
down_blocks_conv: candle_nn::Conv2d,
down_blocks_bn: candle_nn::BatchNorm,
up_blocks_conv: candle_nn::Conv2d,
up_blocks: Vec<(MixingResidualBlock, Option<candle_nn::ConvTranspose2d>)>,
up_blocks: Vec<(Vec<MixingResidualBlock>, Option<candle_nn::ConvTranspose2d>)>,
}
impl PaellaVQ {
pub fn new(vb: VarBuilder) -> Result<Self> {
const IN_CHANNELS: usize = 3;
const OUT_CHANNELS: usize = 3;
const LATENT_CHANNELS: usize = 4;
const EMBED_DIM: usize = 384;
const BOTTLENECK_BLOCKS: usize = 12;
const C_LEVELS: [usize; 2] = [EMBED_DIM / 2, EMBED_DIM];
let in_block_conv = candle_nn::conv2d(
IN_CHANNELS * 4,
C_LEVELS[0],
1,
Default::default(),
vb.pp("in_block.1"),
)?;
let out_block_conv = candle_nn::conv2d(
C_LEVELS[0],
OUT_CHANNELS * 4,
1,
Default::default(),
vb.pp("out_block.0"),
)?;
let mut down_blocks = Vec::new();
let vb_d = vb.pp("down_blocks");
let mut d_idx = 0;
for (i, &c_level) in C_LEVELS.iter().enumerate() {
let conv_block = if i > 0 {
let cfg = candle_nn::Conv2dConfig {
padding: 1,
stride: 2,
..Default::default()
};
let block =
candle_nn::conv2d_no_bias(C_LEVELS[i - 1], c_level, 4, cfg, vb_d.pp(d_idx))?;
d_idx += 1;
Some(block)
} else {
None
};
let res_block = MixingResidualBlock::new(c_level, c_level * 4, vb_d.pp(d_idx))?;
d_idx += 1;
down_blocks.push((conv_block, res_block))
}
let down_blocks_conv = candle_nn::conv2d_no_bias(
C_LEVELS[1],
LATENT_CHANNELS,
1,
Default::default(),
vb_d.pp(d_idx),
)?;
d_idx += 1;
let down_blocks_bn = candle_nn::batch_norm(LATENT_CHANNELS, 1e-5, vb_d.pp(d_idx))?;
let mut up_blocks = Vec::new();
let vb_u = vb.pp("up_blocks");
let mut u_idx = 0;
let up_blocks_conv = candle_nn::conv2d_no_bias(
LATENT_CHANNELS,
C_LEVELS[1],
1,
Default::default(),
vb_u.pp(u_idx),
)?;
u_idx += 1;
for (i, &c_level) in C_LEVELS.iter().rev().enumerate() {
let mut res_blocks = Vec::new();
let n_bottleneck_blocks = if i == 0 { BOTTLENECK_BLOCKS } else { 1 };
for _j in 0..n_bottleneck_blocks {
let res_block = MixingResidualBlock::new(c_level, c_level * 4, vb_u.pp(u_idx))?;
u_idx += 1;
res_blocks.push(res_block)
}
let conv_block = if i < C_LEVELS.len() - 1 {
let cfg = candle_nn::ConvTranspose2dConfig {
padding: 1,
stride: 2,
..Default::default()
};
let block = candle_nn::conv_transpose2d_no_bias(
c_level,
C_LEVELS[i - 1],
4,
cfg,
vb_u.pp(u_idx),
)?;
u_idx += 1;
Some(block)
} else {
None
};
up_blocks.push((res_blocks, conv_block))
}
Ok(Self {
in_block_conv,
down_blocks,
down_blocks_conv,
down_blocks_bn,
up_blocks,
up_blocks_conv,
out_block_conv,
})
}
pub fn encode(&self, xs: &Tensor) -> Result<Tensor> {
let mut xs = candle_nn::ops::pixel_unshuffle(xs, 2)?.apply(&self.in_block_conv)?;
for down_block in self.down_blocks.iter() {
@ -92,7 +196,9 @@ impl PaellaVQ {
// TODO: quantizer if we want to support `force_not_quantize=False`.
let mut xs = xs.apply(&self.up_blocks_conv)?;
for up_block in self.up_blocks.iter() {
xs = xs.apply(&up_block.0)?;
for b in up_block.0.iter() {
xs = xs.apply(b)?;
}
if let Some(conv) = &up_block.1 {
xs = xs.apply(conv)?
}